贝叶斯实验报告

HUNANUNIVERSITY人工智能实验报告题目实验三:分类算法实验学生姓名匿名学生学号2013080702xx专业班级智能科学与技术1302班指导老师袁进一.实验目的1.了解朴素贝叶斯算法的基本原理;---本文来源于网络,仅供参考,勿照抄,如有侵权请联系删除---2.能够使用朴素贝叶斯算法对数据进行分类3.了解最小错误概率贝叶斯分类器和最小风险概率贝叶斯分类器4.学会对于分类器的性能评估方法二、实验的硬件、软件平台硬件:计算机软件:操作系统:WINDOWS10应用软件:C,Java或者Matlab相关知识点:贝叶斯定理:表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A的条件概率,其基本求解公式为:贝叶斯定理打通了从P(A|B)获得P(B|A)的道路。直接给出贝叶斯定理:朴素贝叶斯分类是一种十分简单的分类算法,叫它朴素贝叶斯分类是因为这种方法的思想真的很朴素,朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。朴素贝叶斯分类的正式定义如下:1、设为一个待分类项,而每个a为x的一个特征属性。2、有类别集合。3、计算。4、如果,则。那么现在的关键就是如何计算第3步中的各个条件概率。我们可以这么做:1、找到一个已知分类的待分类项集合,这个集合叫做训练样本集。2、统计得到在各类别下各个特征属性的条件概率估计。即3、如果各个特征属性是条件独立的,则根据贝叶斯定理有如下推导:---本文来源于网络,仅供参考,勿照抄,如有侵权请联系删除---因为分母对于所有类别为常数,因为我们只要将分子最大化皆可。又因为各特征属性是条件独立的,所以有:整个朴素贝叶斯分类分为三个阶段:第一阶段:准备工作阶段,这个阶段的任务是为朴素贝叶斯分类做必要的准备,主要工作是根据具体情况确定特征属性,并对每个特征属性进行适当划分,然后由人工对一部分待分类项进行分类,形成训练样本集合。这一阶段的输入是所有待分类数据,输出是特征属性和训练样本。这一阶段是整个朴素贝叶斯分类中唯一需要人工完成的阶段,其质量对整个过程将有重要影响,分类器的质量很大程度上由特征属性、特征属性划分及训练样本质量决定。第二阶段:分类器训练阶段,这个阶段的任务就是生成分类器,主要工作是计算每个类别在训练样本中的出现频率及每个特征属性划分对每个类别的条件概率估计,并将结果记录。其输入是特征属性和训练样本,输出是分类器。这一阶段是机械性阶段,根据前面讨论的公式可以由程序自动计算完成。第三阶段:应用阶段。这个阶段的任务是使用分类器对待分类项进行分类,其输入是分类器和待分类项,输出是待分类项与类别的映射关系。这一阶段也是机械性阶段,由程序完成。---本文来源于网络,仅供参考,勿照抄,如有侵权请联系删除---三、实验内容及步骤实验内容:A.利用贝叶斯算法进行数据分类操作,并统计其预测正确率,数据集:汽车评估数据集(learn作为学习集,test作为测试集合)B.随机产生10000组正样本和20000负样本高斯分布的数据集合(维数设为二维),要求正样本:均值为[1;3],方差为[20;02];负样本:均值为[10;20],方差为[100;010].先验概率按样本量设定为1/3和2/3.分别利用最小错误概率贝叶斯分类器和最小风险概率贝叶斯分类器对其分类。(假设风险程度正样本分错风险系数为0.6,负样本分错风险为0.4,该设定仅用于最小风险分析)相关概念:贝叶斯法则,先验概率,后验概率,最大后验概率1.贝叶斯法则机器学习的任务:在给定训练数据D时,确定假设空间H中的最佳假设。最佳假设:一种方法是把它定义为在给定数据D以及H中不同假设的先验概率的有关知识下的最可能假设。贝叶斯理论提供了一种计算假设概---本文来源于网络,仅供参考,勿照抄,如有侵权请联系删除---率的方法,基于假设的先验概率、给定假设下观察到不同数据的概率以及观察到的数据本身。2.先验概率和后验概率用P(h)表示在没有训练数据前假设h拥有的初始概率。P(h)被称为h的先验概率。先验概率反映了关于h是一正确假设的机会的背景知识如果没有这一先验...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?