人教高中数学文选修22学案第二章复习小结

第二章复习小结【学习目标】1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.3.了解直接证明的基本方法:分析法、综合法和数学归纳法;了解分析法、综合法和数学归纳法的思考过程、特点.4.了解本章知识结构,进一步感受和体会常用的思维模式和证明方法,形成对数学的完整认识.知识回顾:一、本章知识结构:二、基础知识过关:1.推理(1)合情推理包括推理、推理.(2)称为归纳推理;它是一种由到,由到的推理.(3)称为类比推理;它是一种由到的推理.(4)归纳推理的一般步骤是:①,②.(5)类比推理的一般步骤是:①,②.(6)从一般性的原理出发,推出某个特殊情况下的结论,我们称这种推理为,它是一种到的推理.2.证明:(1)和是直接证明的两种基本方法.(2)反证法证明问题的一般步骤:①;②;③.(3)数学归纳法的基本思想;---本文于网络,仅供参考,勿照抄,如有侵权请联系删除---数学归纳法证明命题的步骤:①;②;③.三、知识运用例1.写出下列推理结果,并指明分别是那种推理?(1)考察下列一组不等式:23+53>22·5+2·52,24+54>23·5+2·53,25+55>23·52+22·53,….将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式可以是.(2)在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间内,若两个正四面体的棱长的比为1∶2,则它们的体积比为.(3)若数列{an}是等差数列,对于bn=(a1+a2+…+an),则数列{bn}也是等差数列.类比上述性质,若数列{cn}是各项都为正数的等比数列,对于dn>0,则dn=时,数列{dn}也是等比数列.(4)∵=(1,0),=(0,-1),∴=(1,0)·(0,-1)=1×0+0×(-1)=0,∴_________________.例2.若△ABC的三个内角A,B,C成等差数列,分别用综合法和分析法证明:.---本文于网络,仅供参考,勿照抄,如有侵权请联系删除---例3.已知a,b,c∈(0,1),求证:(1-a)b,(1-b)c,(1-c)a不能同时大于.例4.已知数列{an},an≥0,a1=0,an+12+an+1-1=an2(n∈N*),求证:当n∈N*时,an<an+1.---本文于网络,仅供参考,勿照抄,如有侵权请联系删除---【课时作业】1.下列推理:①由圆的性质类比出球的性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,推出三角形的内角和是180°;③a≥b,b≥c,则a≥c;④三角形内角和是180°,四边形的内角和是360°,五边形的内角和是540°,由此得凸n边形的内角和是(n-2)×180°.是合情推理的是()A.①②B.①③④C.①②④D.②④2.用反证法证明命题“若整系数一元二次方程ax2+bx+c=0(a≠0)有有理数根,那么a,b,c中至少有一个偶数时”下列条件假设中正确的是()A.假设a,b,c都是偶数B.假设a,b,c都不是偶数C.假设a,b,c中至多有一个偶数D.假设a,b,c中至多有两个偶数3.平面上有n条直线,其中任意的两条不平行,任意三条不共点.f(k)表示n=k时平面被分成的区域数,则f(k+1)-f(k-1)=()A.2kB.2k+1C.k+1D.k+24.观察下列的图形中小正方形的个数,则第6个图中有________个小正方形.5.已知a>0,求证:-≥a+-2.---本文于网络,仅供参考,勿照抄,如有侵权请联系删除---6.自然状态下鱼类是一种可再生资源,为持续利用这一资源,需从宏观上考察其再生能力及捕捞强度对鱼群总量的影响,用xn表示某鱼群在第n年年初的总量,n∈N+,且x1>0.不考虑其他因素,设在第n年内鱼群的繁殖量及捕捞量都与xn成正比,死亡量与x成正比,这些比例系数依次为正常数a,b,c.(1)求xn+1与xn的关系式;(2)猜测:当且仅当x1,a,b,c满足什么条件时,每年年初鱼群的总量保持不变?(不要求证明)---本文于网络,仅供参考,勿照抄,如有侵权请联系删除---

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

文秘专家
机构认证
内容提供者

1

确认删除?