2022年文本聚类开题报告范文

文本聚类开题报告范文文档聚类可以作为多文档自动文摘等自然语言处理应用的预处理步骤,可以将重要新闻文本进行聚类处理,是一种处理文本信息的重要手段。基于K―Mean文本聚类的研究摘要文本聚类能够把相似性大的文本聚到同一类中。K-Means常用来聚类文本,但是由于聚类中心的选取对聚类结果有影响,导致聚类不稳定,因此采用一种基于聚类中心的改良算法分析文本,通过实验,验证算法的有效性。关键词文本聚类;k-means;相似性;度量准则:TP391文献标识码:B:1671-489X(2022)18-0050-03ResearchforTextClusteringbasedonK-Mean//ZHANGYue,LIBaoqing,HULingfang,MENGLiAbstractTextclusteringcanmakethetextsimilaritylargeclusteredintothesameclass,K-Meansusuallyisusedintextclustering,becauseofimpactingontheclustercenter,whichresultsintheclusteringinstability.Therefore,thispaperusesatextanalysisofimprovedalgorithmbasedontheclusteringcenter,throughtheexperiment,itverifiestheeffectivenessoftheimprovedalgorithm.Keywordstextclustering;k-means;similarity;measurecriterion文本聚类是把不同的文本分别聚在不同的类别中,是文本挖掘的重要技术,它是一种无监督的学习技术,每个类中包含的文本之间具有较大的相似性,不同类间的文本相似性比拟小。文本聚类是数据挖掘的重要分支,它应用神经网络、机器学习等技术,能够自动地对不同文本进行分类。在文本聚类分析中,文本特征表示一般采用向量空间模型[1],这种模型能更好表现文本。在对文本聚类的研究中,Steinbach等人研究了基于划分的方法和基于层次的方法在文本聚类中的适用程度[2-3],得出结论:采用K-Means算法进行聚类,不仅聚类结果较好,而且适用于数据量比拟大的聚类场合。在文章中根据研究者对K-Means的发现,结合实际研究,采用一种基于K-Means的改良算法来聚类。Dhillod等人对文本聚类进行研究发现,采用余弦夹角作为相似性度量比采用欧氏距离度量的结果好很多[4]。1文本聚类文本聚类的方法很多,主要分为基于层次的方法、基于划分的方法、基于密度的方法、基于模型的方法、基于网格的方法[5]。在这些聚类方法中,基于划分的K-Mean是最常用也是很多改良方法的根底,文章中采取的改良方法也是基于K-Mean的。K-Mean首先由MacQueent[6]提出。它能在大数据集中广泛被使用,因为算法效率较高、算法执行过程理解容易。当前进行的很多研究都是以K-Mean为根底开展进行的,它的计算复杂度低,具有与文档数量成线性关系的特性,计算效率不仅高,而且伸缩性较强,适应大数据集的能力也很强。K-Mean以k为初始聚类数,然后把n个文本分到k个聚类中,这样类内的文本具有较高的相似度,不同类间的相似度较小。K-Mean具体的算法过程如下:1)首先给定n个数据文本,从其中任选k个文本,这k个数据文本初始地代表了k个类的数据中心;2)对剩余的每个文本计算其到每个中心的距离,并把它归到最近的中心类中;3)重新计算已经得到的各个类的中心,通常计算中心的准则函数采用平方误差准则,这个准则能够使生成的结果类尽可能地独立和紧凑;4)迭代执行第二步和第三步的动作直至新的中心与原中心相等或小于指定阈值,直到算法结束。具体的算法流程如图1所示。2改良的聚类算法虽然使用K-Mean算法进行文本聚类时,具有计算复杂度低,计算效率不仅高,而且伸缩性较强,适应大数据集的能力也很强的优点,但是实验发现,不仅初始聚类中心的选取对聚类结果有影响,孤立点的存在对文本的相似性的判断也有很大的影响,这就导致聚类判断不稳定。基于此,文章采用一种改良的方法来进行文本聚类,改良关键点在于聚类中心的计算,用与原聚类中心相似的文本数据来计算平均值作为该聚类中心。改良的K-Means算法描述如下所示:1)首先给定n个数据文本,从其中任选k个文本,这k个数据文本初始地代表了k个类的数据中心;2)对剩余的每个文本计算其到每个中心的距离,并把它归到最近的中心类中,记作means;3)选择类中与类中心大于等于(1+a)xmeans的文本集合{D1,D2,...,Dk},其中a[-0.31,0.31],重新计算新文本集中的类中心;4)迭代执行第2...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?