分析机械工程中传统与现代优化方法的应用情况

第1页共8页分析机械工程中传统与现代优化方法的应用情况摘要:本文介绍优化方法近年来在国内机械工程界的应用情况,包括传统优化方法的应用与改进、现代优化方法的应用;分析优化方法应用的发展趋势。关键词:优化方法惩罚函数法遗传算法:K826.16文献标识码:A:本文介绍传统与现代优化方法近年来在国内机械工程界的应用情况,并展望优化方法应用研究的方向。1传统优化方法的应用与改进1.1传统优化方法的应用从近几年发表的工程优化设计论文可以看出,传统优化方法仍有较为广泛的应用,具有不可忽视的作用。在机械工程领域,传统优化方法主要应用于机构或机械零部件的优化设计,在结构、形状、性能和可靠性等方面进行优化,改善了机械产品的质量,减轻了重第2页共8页量,提高了性能。在优化设计中,随机方向法、复合形法、增广拉格朗日乘子法、惩罚函数法等应用都十分广泛。1.2传统优化方法的改进针对广泛采用的基本复合形法存在着搜索不完全、映射系数取值不灵活、复形多样性保持差等缺陷,提出了相应的改进措施,如动态全域映射收缩算子以及最大冗余点映射准则,形成了一类新型的复合形法,大大提高了寻优成功率。文献[7]利用改进的离散变量惩罚函数法解决离散变量的工程问题,将整个优化过程分为连续变量惩罚函数法的初始优化、带离散变量的惩罚函数法优化和网格法检验三步进行,消除了优化变量初始值对优化结果的影响,使优化结果更为准确合理。提出了连续变量及非均匀离散变量的均匀离散化处理方法,并借鉴离散变量的搜索优化法,在连续变量的复合形法基础上,探讨了一种求解有约束非线性混合离散变量的优化设计问题的方法――混合离散复合形法,该算法可用于工程结构优化设计中,其结果不需圆整,解题可靠性和效率大大提高。1.3惩罚函第3页共8页数法惩罚函数法,是约束优化问题中一种比较常用的间接解法。采用基于Powell的内点惩罚函数法对实际偏心摆式飞剪机剪切机构进行优化设计,使飞剪机的机械参数满足了剪切过程要求,同时提高了飞剪机剪切性能和轧件的剪切质量。文献[10]运用内点惩罚函数法将约束优化问题转化为无约束问题后,用共轭梯度法进行机床主传动系统中零件参数的优化,使机床主传动系统方案达到最优,同时可提高设计精度、缩短设计周期。文献[11]利用惩罚函数法对汽车动力传动系优化数学模型进行了优化,使整车综合性能均有显著改善。文献[12]针对混合惩罚优化法存在的初始点选择、可能的局部最优点及计算时间等问题,提出了遗传惩罚复合算法GPCM。2现代优化方法的应用随着20世纪70年代初期计算复杂性理论的形成,科学工作者发现并证明了大量于实际的组合最优化问题是非常难解的问题,其中许多问题如0―1背包问题、旅行商问题(TSP)、装箱问题等,第4页共8页都被证明为NP完全问题,因而传统的优化算法就显得无能为力了。20世纪80年代初期,应运而生了一系列现代优化计算方法,如遗传算法、模拟退火算法、蚁群算法等,它们的共性是基于客观世界中的一些自然现象,通过与组合最优化求解进行类比,找出它们的一些共性,建立相应的算法。2.1遗传算法遗传算法(GeneticAlgorithm简称GA),是20世纪70年代初期由美国密执根(Michigan)大学霍兰(Holland)教授提出的一种全新概率优化方法。GA是一种非确定性的拟自然算法,它仿造自然界生物进化的规律,对一个随机产生的群体进行繁殖演变和自然选择,适者生存,不适者淘汰,如此循环往复,使群体素质和群体中个体的素质不断演化,最终收敛于全局最优解。2.2模拟退火算法模拟退火算法(SimulatedAnnealing简称SA),最早的思想由Metropolis在1953年提出,Kirkpatrick在1983年成功地应用在第5页共8页组合最优化问题。SA是一个全局最优算法,以优化问题的求解与物理系统退火过程的相似性为基础,利用Metropolis算法并适当的控制温度的下降过程实现模拟退火,从而达到求解全局优化问题的目的。模拟退火算法是一种通用的优化算法,用以求解不同的非线性问题;对不可微甚至不连续的函数优化,能以较大概率求得全局优化解;具有较强的鲁棒性、全局收敛性、隐含并行性及广泛的适应性;并且能处理不同类型的优化设计变量(离散的...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?