典型的故障预测方法

基于统计过程控制(SPC)的故障预测技术统计过程控制(StatisticalPI’OCes8Control,SPC)是一种有效的数据统计方法,将SPC理论和计算机技术相结合,对机械制造、产品加工等生产过程的产品进行质量管理,以改进生产技术,提高产品质量,具有对生产过程预防和监控的能力。统计过程控制技术运用休哈特(A.Shewhart)的过程控制理论即控制图来判断设备是否处于稳定可靠状态,根据控制图上的特征值点分布状况,分析对象系统特性的趋势,并采取预防措施确保对象系统特性始终处于统计控制状态,从而达到改进与保证质量的目的。属于基于数据的故障预测中的一种。预置损伤标尺方法又称为“基于保险和预警装置的方法”,是通过在实际产品中增加保险或预警装置来提供故障的早期预警。性能状态检测方法又称为“基于故障预兆监控与推理的方法”、“数据驱动方法”,是利用可以测量的产品性能或者状态变量的变化趋势、故障征兆等进行故障的预测。环境应力检测方法又称为“基于失效物理模型的方法”,是基于产品的失效物理模型,对产品的环境应力和工作应力进行监测和累计损伤计算,进而推断出产品的剩余寿命。2.3.1基于失效寿命数据的故障预测失效寿命数据包括失效时间、无故障数据和截尾数据。根据失效寿命数据的分类,KM估计对三类数据的处理过程如下:①观测到故障的失效寿命数据,在故障发生前可靠度为1,在故障发生后可靠度为0。其表达式为:②未观测到故障的样本数据,可靠度估计恒为1,即r(t)=1。③截尾数据。在截尾之前可靠度为1,截尾后采用KM估计。其表达式为:2.3.3基于多输出支持向量机(SVM)的故障预测构造的多输出SVM故障预测模型如图4所示。故障预测模型的输入为样本的性能退化数据序列(每个样本序列均以时间先后为序排列),输出为对应样本的可靠度。故障预测模型的工作原理就是,通过训练多输出SVM来拟合性能退化数据和可靠度间的非线性关系,用训练好的SVM预测组件将来时刻的可靠度。2)故障预测技术现有用于机电设备故障/失效预测的方法可归纳分为以下5个主要类别:传统的可靠性方法-基于事件数据(EventData)的预测;预测学(Prognostics)方法-基于状态数据(ConditionMonitoring)的预测;综合集成的方法(IntegratedAp-proaches)-基于事件数据和状态数据的预测;基于定性知识的故障预测方法;其他故障预测方法从目前研究工作综合来看,故障预测方法分类很多,最常见的可以分为:①基于模型的故障预测技术;②基于数据驱动的故障预测技术;③基于概率统计的故障预测技术。3.1基于模型的故障预测技术基于模型的故障预测方法假定可以获得对象系统精确的数学模型。这种方法通过对功能损伤的计算来评估关键零部件的损伤程度,通过建立物理模型或随机过程建模,用来评估部件剩余寿命。通常情况下,对象系统的故障特征通常与所用模型的参数紧密联系,随着对设备或系统故障演化机理研究的逐步深入,可以逐渐修正和调整模型以提高其预测精度。灰色模型(GreyModel)是1952年由我国邓聚龙教授提出,是目前常用的预测模型之一,通过一阶微分方程揭示数列的发展规律。灰色预测按灰色系统理论建立预测模型,根据系统的普遍发展规律,建立一般性的灰色微分方程,通过对数据序列的拟合,求得微分方程的系数,从而获得灰色预测模型。该模型用于故障短期预测效果比较好。基于滤波器的算法主要包括卡尔曼滤波器和粒子滤波器两种。卡尔曼滤波器基本思想是通过对含有噪声的观测信号的处理,得到被观测系统状态的统计估计信息。粒子滤波器方法通过非参数化的蒙特卡罗模拟方法来实现贝叶斯滤波,用样本形式对先验信息和后验信息进行描述。基于滤波器的方法要求系统模型己知,当模型比较精确时,通过比较滤波器的输出与实际输出值的残差,实时调整滤波器的参数,能够较好地估计系统的状态,同时,也能对系统的状态做短期预报。但一旦模型不准确,滤波器估计值就可能发生较大偏差。3.2基于数据驱动的故障预测技术如果不同信号引发的故障数据或依据统计得来的数据集,难以确定准确的数学模型,在故障预测时容易造成过大偏差,装备在测试或传感器数据也能成为故障预测的一种手段。基于测试或者传感器数据进行预测的方法称...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?