RNA-seq数据差异表达分析方法的比较

RNA-seq数据差异表达分析方法的比较BMCBioinformatics2013,14:91doi:10.1186/1471-2105-14-91AcomparisonofmethodsfordifferentialexpressionanalysisofRNA-seqdataCharlotteSoneson(Charlotte.Soneson@isb-sib.ch)MauroDelorenzi(Mauro.Delorenzi@unil.ch)摘要说的背景是:“发现条件间差异表达的基因是理解表型变异的分子基础的一个有机部分。过去几十年中,DNA微阵列被广泛用于定量不同基因的mRNA丰度,更近期的RNA-seq作为一个强有力的竞争者冒了出来。随着测序成本持续下降,可以想象使用RNA-seq做差异表达分析会迅速增加。为了探索可能性和解决这种相对新型的数据提出的挑战,大量软件包特别为RNA-seq数据的差异表达分析开发出来了。”而本文的结果是:“我们广泛比较了RNA-seq数据的差异表达分析的7种方法。所有方法都可以在R框架下免费获得,并以一个计数矩阵作为输入,计数即每个样品中映射到每个感兴趣的基因组特征上的reads数目。我们基于模拟数据和实际RNA-seq数据评价了这些方法。”结论就是:“极小样本量仍是RNA-seq实验的普遍状况,对所有评价方法造成了困难;而任何在这样的条件下获得的结果都应该谨慎解释。对于更大的样本量,组合稳定方差变换和limma方法来进行差异表达分析会在很多不同的条件下表现良好,正如非参数的SAMseq方法一样。”到2013年还说这种话,这些结论实在有点鸡肋啊~貌似为SAMseq摇旗呐喊来的……不过:比较了11种软件包,这还是前所未有的:DESeq、edgeR、NBPSeq、TSPM、baySeq、EBSeq、NOISeq、SAMseq、ShrinkSeq这9种可直接处理计数数据,另两种分别是voom(+limma)和vst(+limma),转换数据后用limma做差异表达分析。正如很多文章已经提到的那些,RNA-seq比起微阵列有三大优点:1、更大的动态范围2、更低的背景噪音3、能检测和定量先前未知的转录本及亚型RNA-seq也有一些难题:---本文来源于网络,仅供参考,勿照抄,如有侵权请联系删除---1、样本内不均匀性:基因组区域之间核苷酸组成的变异性导致沿基因组的read覆盖深度并不均匀;2、同样表达水平下,长基因比短基因有更多的reads;3、对于条件之间的表达差异,分别对各个基因进行差异表达分析,而忽略了样本内的偏倚(它们被假设对所有样本有类似的影响)4、样本间不均匀性:测序深度或文库大小5、少数高表达基因抑制了其他基因的read计数比例,可能导致低表达基因的差异表达假阳性相应的解决办法是:1、对上述4,5两点,估计样本特异的归一化因子,用于重新调整观测计数。这些归一化方法是为了使样本间的非差异表达基因的归一化计数是相似的。本研究中使用的是DESeq包中的TMM方法。归一化因子和TMM两种方法的性能相似,也是仅有的两个在文献9的评价中对所有度量都提供了满意结果的方法。2、对于2、4两点,基因长度和文库大小,有的软件采用了RPKM或相关的FPKM方法。只有非参数方法才适用于RPKM值。致命的假设:大部分基因在样本间的表达是相等的。于是差异表达基因分成上调、下调及其之间的或多或少相等的三部分。差异表达已经提出的模型中,Poisson分布和负二项分布最常见,还有β分布也被提出来。Poisson分布很适合技术变异的分析;而更高的生物学变异需要合并过离散的分布,如负二项分布。RNA-seq数据的差异表达分析仍处于它的婴儿期,需要不断提出新的方法来。目前没有一致认可的表现最好的方法,只发表了很少的现有方法的广泛比较。文献19中,依照区分真实差异/非差异表达基因的能力比较了四种参数方法。还有研究评价了测序深度的影响,并与样本量进行了比较,并发现后者的影响相当大。本文中比较了为不同条件下RNA-seq数据的差异表达分析开发的11种方法。其中9种直接对计数数据进行建模,而另两个先对计数进行变换再应用微阵列数据的差异表达分析的传统方法。研究限于R框架下实现的可应用于计数矩阵的可用方法。进一步我们聚焦于发现两条件之间的差异表达基因,因为这是最常见的应用,虽然大多数方法也允许更复杂的试验设计。对NB和Poisson分布模拟的数据和分别加了一些例外点的数据共四种数据集,研究了在不同实验条件下方法的下列方面:---本文来源于网...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?