最优化方法课程设计报告模

??最优化方法最优化方法??课程设计课程设计题目:共轭梯度法算法分析与实现院系:数学与计算科学学院专业:数学与应用数学姓名:梁婷艳学号:0800730103指导教师:丰兵日期:2015年12月30日---本文来源于网络,仅供参考,勿照抄,如有侵权请联系删除---摘要在各种优化算法中,共轭梯度法是非常重要的一种。本文主要介绍的共轭梯度法是介于最速下降法与牛顿法之间的一种无约束优化算法,它具有超线性收敛速度,而且算法构造简单,容易编程实现。在本次实验中,我们首先分析共轭方向法、对该算法进展分析,运用基于共轭方向的一种算法—共轭梯度法进展无约束优化问题的求解。无约束最优化方法的核心问题是选择搜索方向。共轭梯度法的根本思想是把共轭性与最速下降方法相结合,利用点处的梯度构造一组共轭方向,并沿这组方向进展搜索,求出目标函数的极小点。根据共轭方向的根本性质,这种方法具有二次终止性。再结合该算法编写matlab程序,求解无约束优化问题,再结合牛顿算法的理论知识,编写matlab程序,求解一样的无约束优化问题,进展比拟分析,得出共轭梯度法和牛顿法的不同之处以及共轭梯度法的优缺点。共轭梯度法仅需利用一阶导数信息,防止了牛顿法需要存储和计算Hesse矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。共轭梯度法是一个典型的共轭方向法,它的每一个搜索方向是互相共轭的,而这些搜索方向仅仅是负梯度方向与上一次迭代的搜索方向的组合,因此,存储量少,计算方便。关键词:共轭梯度法;超线性收敛;牛顿法;无约束优化---本文来源于网络,仅供参考,勿照抄,如有侵权请联系删除---AbstractInavarietyofoptimizationalgorithms,conjugategradientmethodisaveryimportantone.Inthispaper,theconjugategradientmethodisbetweenthesteepestdescentmethodandNewtonmethodforunconstrainedoptimizationbetweenamethod,ithassuperlinearconvergencerate,andthealgorithmissimpleandeasyprogramming.Inthisexperiment,wefirstanalyzetheconjugatedirectionmethod,thealgorithmanalysis,theuseofaconjugatedirection-basedalgorithm-conjugategradientmethodforunconstrainedoptimizationproblems.Unconstrainedoptimizationmethodistoselectthecoreissueofthesearchdirection.Conjugategradientmethodisthebasicideaoftheconjugatedescentmethodwiththemostbinedpointsinthegradientusingtheknownstructureofasetofconjugatedirections,andsearchalongthedirectionofthisgroup,findtheminimumpointofobjectivefunction.Accordingtothebasicnatureoftheconjugatedirection,thismethodhasthequadratictermination.binedwiththepreparationofthisalgorithmmatlabprogramforsolvingunconstrainedoptimizationproblems,binedwithNewton’stheoryofknowledge,writingmatlabprogramtosolvethesameproblemofunconstrainedoptimization,parisonanalysis,theconjugategradientmethodandNewtonmethoddifferentOfficeandtheadvantagesanddisadvantagesoftheconjugategradientmethod.Conjugategradientmethodusingonlyfirstderivativeinformation,toavoidtheNewtonmethodrequiresstorageandputingtheinverseHessematrixandshortings,isnotonlytheconjugategradientmethodtosolvelargelinearsystemsoneofthemostuseful,butalsolarge-scalesolutionnonlinearoptimizationalgorithmisoneofthemosteffective.Conjugategradientmethodisatypicalconjugatedirectionmethod,eachofitssearchdirectionisconjugatetoeachother,andthesearchdirectiondisjustthenegativegradientdirectionwiththelastiterationofthesearchdirectionoftheportfolio,therefore,storagelessputationalplexity.Keywords:Conjugategradientmethod;Superlinearconvergence;NewtonmethodUnconstrainedoptimization---本文来源于网络,仅供参考,勿照抄,如有侵权请联系删除---目录1、引言12、共轭梯...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?