基于VMD-LSTM的触电电流提取方法研究

基于VMD-LSTM的触电电流提取方法研究摘要:为有效提取触电故障特征,实现从剩余电流中分离出触电电流,提出了一种基于变分模态分解(VariationalModeDecomposition,VMD)与长短期记忆神经网络(LongShortTermMemory,LSTM)相结合的触电电流提取方法.利用果蝇优化算法对VMD参数[K,α]寻优获得最优参数组合[6,280],以VMD分解的剩余电流最佳模态分量突变特性为依据,定义相邻周期电流幅值和的增长率η1、η2作为判别触电事故的特征量;以6层模态分量信号重构触电信号,构建基于LSTM网络的触电电流检测模型.240组触电信号研究结果表明:当η1、η2至少一个满足大于1%时,均发生触电,否则无触电事故发生;相比于VMD-BP、VMD-RBF检测模型,VMD-LSTM检测模型提取的触电电流与真实触电电流的相关系数平均值分别提高了6.2%、2.3%,均方根误差平均值分别降低了36.8%、27.1%,提出的方法具有更高的检测精度.研究结果为研发基于生物体触电电流动作的剩余电流保护装置提供了参考.关键词:剩余电流;VMD;LSTM网络;触电故障检测;信号提取:TM774文献标志码:A剩余电流保护装置作楣惴河τ糜诘脱沟缤中的安全设备,在实际应用中存在拒动、误动等现象[1].为减小或消除剩余电流保护装置动作死区,提高其动作可靠性,需研发基于生物体触电电流动作的剩余电流保护装置.目前亟需解决的问题是触电故障时段的检查及从剩余电流中提取触电电流.国内外学者在触电电流检测方面做了诸多研究,第1页共4页李春兰等[2]利用小波变换和BP神经网络、关海鸥[3]等利用数字滤波和径向基神经网络均建立了从剩余电流中提取触电电流的神经网络模型,但都存在神经网络易陷入局部最优、训练结果不稳定等问题.韩晓慧等[4]提出滤波技术结合最小二乘支持向量机优化方法建立触电电流检测模型,检测误差小于径向基神经网络模型,但该方法需要大量触电信号进行关系训练,且对触电信号非峰值预测准确性低于峰值预测结果.基于此,刘永梅等[5]提出利用神经网络对触电信号非峰值拟合、对峰值利用支持向量机拟合的触电电流检测方法,提升了触电信号检测的准确性,但存在峰值范围阈值选取过程繁杂的问题.王金丽等应用Hilbert-Huang变换提取模态分量多维度能量特征向量,通过模糊遗传神经网络识别触电类型,存在无法判别触电时段的问题.高阁等[7]采用经验模态分解(EmpiricalModeDecomposi?tion,EMD)及其改进算法对触电信号分析,提出利用第一层模态分量中的突变点判断触电时刻,但该方法对电源电压过零点时刻触电的识别失效.Dragomiretskiy[8]根据维纳滤波和变分问题提出了变分模态分解(VariationalModeDecomposition,VMD),采用非递归分解方式通过构造并分解约束变分问题来实现对信号的分解,抑制了模态混叠现象,适用于多领域信号预处理研究[9-11].长短期记忆神经网络(LongShortTermMemory,LSTM)是一种时间循环神经网络,避免了传统循环神经网络产生的梯度消失与梯度爆炸问题,能综合学习长期依赖关系,大量提取数据深层特征,被广泛应用于时间序列数据的处理[12-14].鉴于此,本文提出了一种基第2页共4页于VMD-LSTM的触电电流检测模型,其目的是通过变分模态分解获得触电故障特征,进一步搜寻触电时段;再将重构后的触电信号结合长短期记忆神经网络构建触电电流识别模型,提取触电电流,为研发基于生物体触电电流动作的剩余电流保护装置奠定基础.1变分模态分解优化算法1.1变分模态分解原理VMD是一种自适应信号处理方法,可将非平稳信号f分解为K个模态分量子信号uk,且每个分量有一个确定的有限带宽和中心频率ωk.约束条件的变分问题为:式中:{uk}={u1,...,uK}、{ωk}={ω1,...,ωK}分别为所有模态及其中心频率,?t为对t求偏导数,δ(t)为狄拉克分布,*表示卷积.为了求解式(1),可引入二次惩罚因子α和拉格朗日乘法算子λ将式(1)转换为非约束变分问题,增广拉格朗日函数表示如式(2):和λ求解式(2)的最优解,其求解迭代过程见文献[8],由此可得:式中:f?(ω)、u?n(ω)、λ?n(ω)和u?n+1(ω)分别表示f(t)、un(t)、λn(t)和un+1(t)的傅里叶变换;τ为更新参数,nlk为迭代次数.∑迭代的收敛条件如式...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?