中国的数学几件数学新闻和对于中国数学的一些看法

中国的数学---几件数学新闻和对于中国数学的一些看法张存浩先生要我讲点数学,这么短的时间,而数学这么大,只好举几个要点谈谈。数学是什么?数学是根据某些假设,用逻辑的推理得到结论,因为用这么简单的方法,所以数学是一门坚固的科学,它得到的结论是很有效的。这样的结论自然对学问的各方面都很有应用,不过有一点很奇怪的,就是这种应用的范围非常大。最初你用几个数或画几个图就得到的一些结论,而由此引起的发展却常常令人难以想象。在这个发展过程中,我认为不仅在数学上最重要,而且在人类文化史上也非常突出的就是Euclid在《几何原本》。这是第一本系统性的书,主要的目的是研究空间的性质。这些性质都可以从很简单的公理用逻辑的推理得到。这是一本关于整个数学的书,不仅仅限于几何学。例如,Euclid书上首先证明素数的个数是无穷的,这便是一个算术的结论。随着推理的复杂化,便有许多“深刻”的定理,需要很长的证明。例如,有些解析数论定理的证明,便需几十条引理。最初,用简单的方法证明几个结果,大家很欣赏,也很重要。后来方法发展了,便产生很复杂的推理,有些定理需要几十页才能证明。现在有的结果的证明甚至上百页,上千页。看到这么复杂的证明,我们固然惊叹某些数学家高超的技巧和深厚的功力,但心中难免产生一些疑问,甚或有些无所适从的感觉。所以我想,日后数学的重要进展,在于引进观念,使问题简化。---本文来源于网络,仅供参考,勿照抄,如有侵权请联系删除---先讲讲有限单群的问题。1.有限单群我们知道,数学的发展中有一个基本观念—群。群也是数学之中各方面的最基本的观念。怎样研究群的结构呢?最简单的方法是讨论它的子群,再由小的群的结构慢慢构造大一些的群。群中最重要的一种群是有限群,而有限群是一个难极了的题目,需要有特别的方法,特别的观念去研究。命G为群,g∈G为一子群,如对任何g∈G,gH-1g∈H,则称H为正规的(nomal)。正规子群存在,可使G的研究变为子群H及商群G/H的研究。这样就有一个很自然的问题,有哪些有限的单群(simplegroup)。单群除了它自己和单位元(identity)之外,没有其他的非平凡的正规子群(normalsubgroup)。数学上称其为简单群,其实一点也不简单。有限群论的一个深刻的定理是Fei-Thompson定理:非交换单群的阶(数)(即群中元素的个数)是偶数。更不寻常的是除了某些大类(素数阶循环群Zp,交错群An(n》=5),Lie型单群)外,后来发现了26个零零碎碎的有限单群(散在单群,离散单群),现在知道,最大的散在单群的阶是412096235423571113171923293141475971=808,017..=1054---本文来源于网络,仅供参考,勿照抄,如有侵权请联系删除---这是很大的单群,由B.Fisher和R.L.Griess两位数学家所发现,数学家称它为魔群(怪物,Monster)。单群的权威数学家D.Gorenstein相信有限单群都在这里了,这当然是数学上一个很好的结果。把单群都确定了,就像化学家把元素都确定了,物理学家把核子的结构都确定了一样。可这里有个缺点,Gorenstein并未将证明写出来。他讲若将证明写出来至少有1000页,而1000页的证明无论如何很容易有错误。可是Gorenstein又说,不要紧,若有错误,这个错误一定可以补救。你相信不相信?数学界有些人怀疑这样的证明是否必要。现在计算机的出现,许多问题可以验证到很大的数,是否还需要严格的证明,已变成数学上一个有争论的问题。这个争论看来一时无法解决。段学复先生是我的老朋友,是有限群论的专家,也许我们可以问一下他的意见。我个人觉得这个问题很难回答。不过数学家有个自由,当你不能做或不喜欢做一个问题时,你完全不必投入,你只需做一些你能做或喜欢做的问题。2.四色问题把地图着色,使得邻国有不同的颜色,需要几种颜色?经验告诉我们,四色够了。但是严格的证明极难。这就是有各的四色问题。地图不一定在球面上,也可在亏格高的的曲面上(一个亏格高为g的曲面在拓扑上讲是球面加g个把手;亏格为1的曲面可设想为环面)。可惊奇的是,这个着色问题,对于g》=1的曲面完全解决了。可以---本文来源于网络,仅供参考,勿照抄,如有侵权请联系删除---◁文...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?