Google科学家吴军写的数学之美

数学之美系列——统计语言模型2006年4月3日上午08:15:00从本周开始,我们将定期刊登Google科学家吴军写的《数学之美》系列文章,介绍数学在信息检索和自然语言处理中的主导作用和奇妙应用。发表者:吴军,Google研究员前言也许大家不相信,数学是解决信息检索和自然语言处理的最好工具。它能非常清晰地描述这些领域的实际问题并且给岀漂亮的解决办法。每当人们应用数学工具解决一个语言问题时,总会感叹数学之美。我们希望利用Google中文黑板报这块园地,介绍一些数学工具,以及我们是如何利用这些工具来开发Google产品的。系列一:统计语言模型(StatisticaILanguageModeIs)GoogIe的使命是整合全球的信息,所以我们一直致力于研究如何让机器对信息、语言做最好的理解和处理。长期以来,人类一直梦想着能让机器代替人来翻译语言、识别语音、认识文字(不论是印刷体或手写体)和进行海量文献的自动检索,这就需要让机器理解语言。但是人类的语言可以说是信息里最复杂最动态的一部分。为了解决这个问题,人们容易想到的办法就是让机器模拟人类进行学习-学习人类的语法、分析语句等等。尤其是在乔姆斯基(NoamChomsky有史以来最伟大的语言学家)提岀“形式语言”以后,人们更坚定了利用语法规则的办法进行文字处理的信念。遗憾的是,几十年过去了,在计算机处理语言领域,基于这个语法规则的方法几乎毫无突破。其实早在几十年前,数学家兼信息论的祖师爷香农(ClaudeShannon)就提出了用数学的办法处理自然语言的想法。遗憾的是当时的计算机条件根本无法满足大量信息处理的需要,所以他这个想法当时并没有被人们重视。七十年代初,有了大规模集成电路的快速计算机后,香农的梦想才得以实现。首先成功利用数学方法解决自然语言处理问题的是语音和语言处理大师贾里尼克(FredJelinek)。当时贾里尼克在IBM公司做学术休假(SabbaticalLeave),领导了一批杰出的科学家利用大型计算机来处理人类语言问题。统计语言模型就是在那个时候提出的。给大家举个例子:在很多涉及到自然语言处理的领域.如机器翻译、语音识别、印刷体或手写体识别、拼写纠错、汉字输入和文献查询中,我们都需要知道一个文字序列是否能构成一个大家能理解的句子,显示给使用者,对这个问题,我们可以用一个简单的统计模型来解决这个问题。如果S表示一连串特定顺序排列的词wl,w2,…,wn,换句话说,S可以表示某一个由一连串特定顺序排练的词而组成的一个有意义的句子。现在,机器对语言的识别从某种角度来说,就是想知道S在文本中出现的可能性,也就是数学上所说的S的概率用P(S)来表示。利用条件概率的公式,S这个序列出现的概率等于每一个词岀现的概率相乘,于是P(S)可展开为:P(S)二P(w1)P(w2|w1)P(w3|w1w2)—P(wn|w1w2—wn-1)其中P(w1)表示第一个词w1出现的概率:P(w2|w1)是在已知第一个词的前提下,第二个词出现的概率;以次类推。不难看岀,到了词wn,它的岀现概率取决于它前面所有词。从计算上来看,各种可能性太多,无法实现“因此我们假定任意一个词wi的岀现概率只同它前面的词wi-1有关(即马尔可夫假设),于是问题就变得很简单了。现在,S岀现的概率就变为:P(S)二P(w1)P(w2|w1)P(w3|w2)・・・P(wi|wi-1)…(当然,也可以假设一个词又前面N-1个词决定,模型稍微复杂些。)接下来的问题就是如何估计P(wi|wi-1)o现在有了大量机读文本后,这个问题变得很简单,只要数一数这对词(wi-1,wi)在统计的文本中岀现了多少次,以及wi-1本身在同样的文本中前后相邻岀现了多少次,然后用两个数一除就可以了,(P(wi|wiT)=P(wi)/[P(wi-1,wi)]<,---本文来源于网络,仅供参考,勿照抄,如有侵权请联系删除---也许很多人不相信用这么简单的数学模型能解决复杂的语音识别、机器翻译等问题。其实不光是常人,就连很多语言学家都曾质疑过这种方法的有效性,但事实证明,统计语言模型比任何已知的借助某种规则的解决方法都有效。比如在Google的中英文自动翻译中,用的最重要的就是这个统计语言模型。去年美国标准局(NIST)对所有的机器翻译系统进行了评测,Google的系统是不仅是全世界最好的,而且高出所有基于规则的系统很多。...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

确认删除?