从预测行为到支持适应性教学

从预测行为到支持适应性教学从预测行为到支持适应性教学摘要:现代信息技术的发展为大数据的收集和分析提供了无限的可能,大数据时代的这一趋势也对教育产生了巨大的影响:一方面,在科技理性的指导下,通过多维度收集学生行为的数据并进行模型建构,可以对学生的学习行为进行预测;另一方面,大数据时代的人文主义转向使人们更关注教学活动的适应性,教育大数据的挖掘和利用可以更好地实现适应个人需求的定制化教学。关键词:大数据;教学;预测;适应性:G434文献标志码:A:1673-8454(2021)11-0035-05国际数据公司(IDC)认为大数据时代数据有4大特点――数据的规模大、价值大、数据流转速度快以及数据类型多。大数据的挖掘和利用对教育――特别是课堂教学――产生着深远的影响。学习科学家索耶认为:越来越多的学习将经过计算机中介发生,并产生越来越多的数据,我们有必要运用这些数据分析什么时候有效的学习正在发生。所以数据挖掘可以用于探究行为与学习之间的关系,如学习者的个体差异与学习行为之间有何关系,不同行为又会导致何种不同的学习结果等。[1]2012年美国发布《通过教育数据挖掘和学习分析促进教与学》(EnhancingTeachingandLearningthroughEducationalDataMiningandLearningAnalytics)[2]提出大数据时代教育数据的特点:具有层级性、时序性和情境性,其中数据的层级性指,既收集教师层面的数据也收集学生层面的数据,既收集课堂数据也收集活动数据,为后期模型的建立提供了多维度的资源;数据的时序性是指,数据是实时的、连续的,为材料的前沿性提供了保障;而数据的情境性是指,数据是基于真实情境脉的,保证了模型的信度。由此观之,大数据技术能够促进以学生为本的学习,数据不仅仅是科技理性指导下收集数据和拟合成模型,并针对学生的群体行为做出预测判断,还可能在固有模型的基础上,通过诊断学生在课堂中的行为表现,对固有模型进行修改,使课程内容更加适合学生的长尾需求,实现个性化教学。大数据的利用可以支持对教育活动行为的建模预测,还可能支持教育实践中的适应性教学。前者是后者的基础,后者是前者的深化。1/6一、建模与预测导向的大数据应用大数据时代数据促进教育变革的方法之一是收集和分析处理数据,并进行预测。现如今,由于数据记录、存储与运算的便捷性,海量的、多层次的数据可以便捷地加以收集,由随机抽样带来的误差因此减小,建模和预测可以基于全数据和真实数据,因而就更为精确。大数据时代通过探求海量数据的相关关系获得盈利的最成功的案例是亚马逊的市场营销,亚马逊收集读者网上查阅行为和购买行为数据,建立读者偏爱阅读模型,预测读者购买的群体行为,实现书籍的推荐。近几年,教育研究的对象逐渐关注学生的学习行为,其背后是一种学习观的转变,学习被视为一种识知的过程(knowingabout),识知是一个活动,而不是将知识作为一个物品加以传递。识知总是境脉化的,而不是抽象的和脱离于具体情境的。识知是在个体与环境的互动中交互建构的,而不是客观准确的,也不是主观创造的。[3]所以,学生的行为活动数据被认为是可以反映学生在学习过程这一情境化的动态变化进程中的情况。海量、多层次、连续的行为数据在收集后被拟合成模型,实现预测,如学习管理系统(LMS)的运用。然而,由于建模和预测依赖的基本原理为数理统计,其预判对象主要是学生的群体行为。1.案例分析学习管理系统(LearningManageSystem)简称LMS,是基于网络的管理系统平台,用于监控学生学习活动行为,识别和预测学困生(studentat-risk),并为其提供相应的帮助。大多数LMS包括5个部分:有和课程相关的学习资料、用于确保学生提交作业与完成测试的评价工具、用于沟通的交流工具(如邮件、聊天室等)、用于确保教师记录和存储学生的学习活动并发布活动截止日期的课程管理工具、用于帮助学生学习回顾和跟踪学习进程的学习管理工具。在高校大量使用的BB(Blackboard)平台就是一个常见的学习管理系统。系统记录了学生参与选修的网上课程的种类、在线时长、阅读和浏览的文章数量,反映学习者的学习行为。2008年,LeahP.Macfadyen和ShaneDawson教授在加...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

确认删除?