互补性与次协调性

互补性与次协调性【内容提要】玻尔互补性原理的准确意义已引起了许多争论。这里我们并不打算对玻尔的观点进行详细的评论,而是对在一种明确的意义上包含互补性被我们称之为C-理论的理论所能理解的东西作尽可能有道理的解释。那些理论的基本逻辑是一种通过对经典逻辑的演绎概念作恰当修改而得到的所谓“次经典”逻辑。粗略地说,C-理论是含有“物理上”不相容定理(尤其是矛盾定理)的非平庸理论。因此,其基本逻辑是一种次协调逻辑。本文被视为我们有关C-理论及其应用的一系列作品的第一篇。【关键词】互补性/C-理论/次协调性EE32UU8412820中图分类号:B815.9文献标识码:A文章编号:1007-8444(2010)03-0302-07一、引言互补性概念由尼尔斯·玻尔于1927年在其著名的“科摩讲座”中引入量子力学的[2]。他的观点对量子力学哥本哈根解释的形成和发展具有根本性的影响,这一点作为对量子论发展的最主要贡献之一在专业文献中得到了广泛的认同[1][19][20]。玻尔互补性的观点尽管很重要,但却引起了很多争议。事实上,对玻尔互补性原理的准确意义似乎并没有普遍协调的看法[1];玻尔曾说过:“我认为,说没有一个被称为哲学家的人真正懂得互补性描述的意义是什么是不足为怪的”[14],这句话可能暗示了为此原理寻求“合理化”的一切努力所要面对的困难。不管怎样,这句话也使我们要看一看与最近几年发展起来的次协调研究相联系的数理逻辑领域[12]。因此,尽管已经表明玻尔从认识论的观点明确地理解了互补性原理[20],但我们认为,探究将互补性原理纳入其基础的一种理论的逻辑结构是完全必要的。考虑到互补性的直观观点类似于矛盾的直观观点,这种理论的基本逻辑结构应当是清楚明了的。回顾一下历史,我们想起一些作者如C.vonWeizsācker、M.Strauss和P.Février都已经试图从逻辑的观点对玻尔的互补性原理进行解释[17][20]。M.Jammer提到玻尔对vonWeizsācker解释互补性原理的尝试的否定,并指出这应当被视为对分析这一原理的警告[20]。Jammer还提到Strauss打算发展出一种逻辑,其中两个命题α和β(代表互补性命题)都可以被接受为真,但它们的合取α∧β却不为真[20];R.carnap认为strauss的逻辑是“不可取的”[10]。近年来发展起来的一些次经典逻辑系统的引入可以丰富这种讨论,这也是我们现在正在做的。但是,让我们首先回想一下,正如一些标准的著作在“定义”互补性的时候所含蓄地暗示那样,“互补性描述”明显更多地与“不相容描述”有关,而不是与“同时性测量”的不可能性有关[22]。我们进一步的考虑是:在不讨论VonWeizsācker和Strauss的著作的情况下(只是为了推动本文的进展下文简单提到了Février的观点),我们引入一种承认互补性解释(用了M.Jammer的说法——见下)的理论这一概念。然后,我们认为,在对通过互补性所理解的东西进行一种可行的解释的情况下,那种理论的基本逻辑是一种次经典的(paraclassical)逻辑[13]。下面我们将概述这种逻辑的主要特征以应用于我们的目的。顺便提一下,在本论文中,一方面要对玻尔的观点提出一种评论,另一方面将关注在某种意义上容纳了互补性的理论的基本逻辑结构。尽管我们认为第一个方面是非常重要的,但我们更关注第二个方面,即使我们没有提供在以后的著作中将会出现的全部技术性细节。因此,本文可以被视为是对第二个方面进行思考的产物。关于第一个方面,可以从参考文献[1]中详细地来了解“通过揭示和描述科摩讲座中含蓄对白的基本脉络”来对玻尔互补性原理进行解释的尝试。最后,我们的论文可以被视为是一种对由P.Février所设想但并未得到发展的一系列创造性工作的尝试性研究。简言之,她把第三个值(不可能)赋予了互补性命题(不可合成的命题)的合取,这样一来,她的逻辑就类似于Lukasiewicz的三值逻辑①。尽管Février认为互补性命题的合取无法实现:“联结词‘并且’不可能适合于它们”[17,但她没想到由于“数学技巧的原因”使那种命题的合取有了某种可能性。在本文中,我们明确地提出了一种可能的方法以避免这些“困难”,这种方法的出现得益于当时还没发展起来的次协调领域的研究。我们对不回避互补性语句的合取方向的...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?