基于遗传算法的人工智能分析

摘要:本文对遗传算法在人工智能方面的应用进行介绍,通过遗传算法对全局运动估计的解决方案进行分析,最后就人工智能在算法的发展方向方面进行了展望和总结。关键词:遗传算法;人工智能;全局运动估计;应用分析:TP18文献标识码:A:1007-9599(2013)01-0240-02所谓人工.智能,就是人工的方法通过计算机实现智能化功能,或者说是人们使用机器模拟人类的智能。山于人工智能是在机器上实现的,所以又称为机器智能。从另一个角度来看,人工智能是研究怎样使计算机来模仿人脑从事的推理、证明、识别、理解、设计、学习、思考、规划及问题求解等思维活动,来解决人类专家才能处理的复杂问题。人工智能的算法很多,包括遗传算法、进化算法、蚁群算法和专家系统、神经网络等。1遗传算法遗传算法的思想是先确定编码方案,对待寻优的缺陷特征参数进行编码,按一定规模初始化种群,种群中的每一个各体就代表了一个可能的解;然后根据适应度值函数计算每一个各体的适应度值并依此决定遗传操作。根据预先确定好的种群选择方案,按一定的概率对种群进行交叉、变异得到下一代,直到遗传算法的终止条件得到满足。与传统的优化算法相比,具有的优缺点如下:1.1遗传算法优点。不是从单个点,而是从多个点构成的群体开始搜索。之所以说是从多点而不是从单点出发,那是因为整个算法的开始是从一个初始种群开始搜索演练最优解,是从多个点开始搜索进化寻找,这样的做的一个好处是避免局部寻找最优解,从任一解出发,按照某种机制,以一定的概率在整个求解空间中探索最优解。山于它们可-以把搜索空间扩展到整个问题空间,因而具有全局优化性能。同时也缩短了整个搜寻额时间,整体上效率更高、结果更接近最优解。实现简单,没有复杂的数学计算,在算法中,一般都有大量且复杂的计算作为整个算法的支撑,同时数学计算也是一步比较耗资源和时间的操作,然后在遗传算法中,在搜索最优解过程中,只需要山目标函数值转换得来的适应度信息再加上简单的比较,而不需要导数等其它辅助信息,操作流程也比较简单,没有过多的转换控制操作,中间也没有多少中间变量,算法具有较强的自适应性。搜索过程不易陷入局部最优点。目前,该算法2渗透到许多领域,并成为解决各领域复杂问题的有力工具,因为是在整个求解空间中探索最优解,所以,基本上不会陷入局部最优解中去。在遗传算法中,将问题空间中的决策变量通过•定编码方法表示成遗传空间的个个体,它是一-个基因型申结构数据;同时,可以将目标函数值转换成适应值,它用来评价个体的优劣,并作为遗传操作的依据。但是,传统的遗传算法同样拥有缺陷。1.2遗传算法缺点。首先,传统的遗传算法编码和解码比较复杂,因为传统的遗传算法的染色体是用二进制编制的,一•个染色体就是一申0和1组成的位出或是字符申,在进化前需要做复杂的编码工作,而在得到最优解后还要做复杂的解码工作,比较繁琐和复杂,在遗传操作过程中也不易掌控,容易出错;其次,算法对初始种群的选择有一定的依赖性。2遗传算法在人工智能领域的应用遗传算法在人工智能的众多领域便得到了广泛应用[2]。例如,机嘴学习、聚类、控制(如煤气管道控制)、规划(如生产任务规划)、设计(如通信网络设计、布局设计)、调度(如作业车间调度、机摇调度、运输问题)、配置(机器配置、分配问题)、组合优化(如TSP、背包问题)、函数的最大值以及图像处理和信号处理等等。另一方而,人们乂将遗传算法与其他智能算法和技术相结合,使其问题求解能力得到进一步扩展和提高。例如,将遗传算法与模糊技术、神经网络相结合,已取得了不少成果。因为遗传算法是模拟生物的进化过程的一类人工智能算法,所以,在算法的初始阶段,应该给一•个初始种群给算法来进化演练。因此,第一步是初始化种群,在初始化种群时,种群的大小要设计科学,这样才能最大力度的发挥遗传算法的性能。在初始化种群后,就要开始进入遗传演练阶段,遗传的第一步操作是对种群的每个个体计算适应度,然后进入遗传演练。在演练过程中,模仿生物的进化过程,有双亲结合产生下一代个体,为了能够保证种群的多样化和过早的收敛于某一个局部最优解...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

文秘专家
机构认证
内容提供者

1

确认删除?