数字图像处理论文基于灰度图像的阈值分割改进方法讲解

基于灰度图像的阈值分割改进方法摘要通常人们只对图像的某个部位感兴趣,为了能够把感兴趣的部分提取出来,就得对图像进行分割。图像分割就是把图像分成一些具有不同特征而有意义的区域,以便进一步的图像分析和理解。图像增强就是突出人们感兴趣有用的部分,或者是改善图像的质量,使它尽可能的逼近原图像。本论文分析了传统的灰度阈值图像分割,即双峰法、迭代法和最大类间方差法在细节部分分割上的缺点,然后,结合图像增强中的微分梯度,对原有图像的细节进行锐化增强,然后再使用这三种方法进行分割,得到的分割结果和传统的分割方法得到的结果进行比较,该方法确实达到了改善分割后图像细节的效果。该方法在matlab环境下进行了实现,实验结果表明,与传统的阈值分割方法相比,本文的方法不仅克服了传统阈值分割方法的不足,而且还对复杂灰度图像的细节部分具有较好的分割效果,为图像分割方法的改进提供了技术支持。关键词:图像分割;图像增强;阈值;梯度;matlab录目.................................................................................................................................1言1.引..........................................................................................................11.1图像分割概述......................................................................................................1图像分割的特征1.2..........................................................................................2图像分割的发展及现状1.3......................................................................................................2研究背景与意义1.4......................................................................................3数字图像处理常用的方法2.1..............................................................................................4数字图像处理的目的2.2......................................................................................5数字图像处理的主要内容2.3......................................................................................6数字图像处理应用的工具2.4........................................................................................................73.图像分割的主要方法..............................................................................................7基于区域的分割方法3.1..............................................................................................7基于边缘的分割方法3.2..............................................................................83.3基于聚类分析的图像分割方法......................................................................................83.4基于小波变换的分割方法......................................................................................93.5基于神经网络的分割方法.................................................................................93.6基于模糊集理论的分割方法......................................................................................10基于灰度图像的阈值分割方法4.............................................................................................................10设计流程图4.1.....................................................................................................10双峰法图像分割4.2...................................................................................................................13迭代法4.3....................................................................................14最大类间方差法图像分割4.4.............................................................

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

文秘专家
机构认证
内容提供者

1

确认删除?