数字图像目标分割与提取研究背景意义目的与现状

数字图像目标分割与提取研究背景意义目的与现状1背景数字图像目标分割与提取是数字图像处理和计算机视觉领域中一个备受关注的研究分支。因为在目标分割与提取过程中可以利用大量的数字图像处理的方法,加上其在计算机视觉、模式识别等领域中的广泛应用,都吸引了众多研究者的注意。相信对这一问题的深入研究不仅会不断完善对这一问题的解决,而且必将推动模式识别、计算机视觉、人工智能等计算机科学分支的发展。图像分割和边缘检测的问题在近二十年中得到了广泛的关注和长足的发展,国内外很多研究人士提出了很多方法,在不同的领域取得了一定的成果。但是对于寻找一种能够普遍适用于各种复杂情况的准确率很高的分割和检测算法,还有很大的探索空间。边缘提取和分割是图像分析的经典研究课题之一,目前的理论和方法仍存在许多不足之处,仍在不断改进和发展。由于图像的多义性和复杂性,许多分割的工作无法依靠计算机自动完成,而手工分割又存在工作量大,定位不准确的难题,因此,人们提出了一些人工交互和计算机自动定位相结合的方法,利用各自的优势,实现目标轮廓的快速定位。相信这些交互式方法的应用,必将推动图像目标分割与提取这一既具有广阔的应用前景又具有重要的学术价值的课题的进一步研究,也必将成为一个更为独立和活跃的研究领域[1]。近年来,DSP技术的发展不断将数字信号处理领域的理论研究成果应用到实际系统中,并且推动了新的理论和应用领域的发展,对图像处理等领域的技术发展也起到了十分重要的推动作用。基于DSP的图像处理系统也被广泛的应用于各种领域。从图像处理技术的发展来看,实时性在实际中有着广泛的应用。实时图像处理系统设计的难点是如何在有限的时间内完成大量图像数据的处理。因为要对图像进行实时处理,所以为了实现实时和快速,高效的处理,在这个系统中要求我们的图像处理速度要达到一定的速度,而图像处理的速度是由算法的执行时间、视频输入输出延迟以及外部数据存储器与DSP的数据交换效率等因素决定。算法执行时间与CPU速度有关;图像处理的速度既图像处理所要用的时间,它主要是由算法决定的。算法执行的指令的多少决定了处理速度。而图像的处理的算法包含有大量的算法指令,为了快速的处理大数据量的多媒体信息,特别是活动图像信息,同时又能灵活的支持多种不同的应用,DSP的应用势在必行。相比于通用的DSP,用于多媒体应用的专用DSP集成了许多专用模块,这些模块用硬件加速很多通用的多媒体方面的大量算法明晰的处理、实时性强等要求.由于图像处理的数据量大,数据处理相关性高,实时的应用环境决定严格的帧、场时间限制,因此实时图像处理系统必须具有强大的运算能力。各种高性能DSP不仅可以满足在运算性能方面的需要,而且由于DSP的可编程性,还可以在硬件一级获得系统设计的极大灵活性。实时图像处理技术在目标跟踪、机器人视觉、智能交通监控中都得到越来越多的应用。2实时图像处理系统国内外现状实时图像处理系统技术随着图像处理与计算机视觉的广泛应用而异军突起,这种系统已广泛应用于各行各业。它们反过来也促进了图像处理与计算机视觉理论的进一步深入、提高。2.1实时图像处理系统的发展和现状图像处理的发展与计算机以及硬件技术的发展是紧密联系的。最早发表有关计算机处理图像信息文章的时间要追溯到20世纪50年代,随着计算机以及硬件技术的高速发展,性能大幅度提高,而价格却大幅度下降,有力地推动了图像处理技术的发展,实时图像处理系统的发展大致上可以划分为四个阶段。①图像处理系统发展的第一阶段第一阶段的时间大体上是20世纪60年代到80年代中期,这个时期的图像处理系统采用机箱式结构,主流计算机采用小型机,并采用双屏操作方式,所以系统的体积比较大,功能也比较强,当然价格也比较贵。②图像处理系统发展第二阶段第二阶段的时间大体上是20世纪80年代中期到90年代初期,这个阶段的主要特点是小型化,外形不再是机箱式而是插卡式,绝大部分都采用PC系列微机构成图像处理系统,计算机总线采用ISA(IndustrialStandardArchitecture)总线,并采用双屏操作方式。图像卡的体积较小,一般图像卡都是采用大规模集成...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?