第十章曲线曲面积分§10.1对弧长的曲线积分一、选择题?AB为,则曲线积分有关系(1.设曲线弧段).????f(x,y)ds?)dx,y)dssf(x,yf(x,)ds??yf((B)(A);;????BAABBAAB??f(x,y?)ds?0f(x,y)ds(C);??BAAB??f(?x,?y)dsf(x,y)ds?(B)(D).答.??BAAB23tt??2y1),??t?t,y?,z?(0:Cx,其线密度为2.设有物质曲线它23M?(的质量).1122424??dt?dtttt?t1?t1?t(B)(A);;00112424??ttddt?tt11?t??t(A)(D)(C).;答.0022y?x?OM(1,1)M(0,0)OdI?se则与曲线积分是从,的直线段3.设到OM).不相等的积分是(1122xy??2d2dxeye(B)(A);;0012rr??red2dre(D)(C)(D).答;00?(x?y)ds?3)(4,(0,0)ABL(的直线段,到则曲线积分4.设是从).L33????43??ydxy?ydx?x(A)(B);;????44????009393????43??xd?x?y1+dy1+xy(D)(C)(D).;答.????164416????002x?y(0,0)(1,1)L的一段弧,从5.设点为抛物线则到点曲线积分上?yds?().L112??y1?ydyxx4d1?(B)(A);;001112??xdxx1?4y1?dy(C)(D)(C).答;.y00?(x?y)ds?2)?1,(A(1,0)BL(6.设是从则曲线积分到).的直线段,L2222?(D)(C)(B)(A)(D)2.答.;;;二、填空题22531?x?y????LsdxxdsII??与的大小关系是,1.设则是圆周21LL.I?I.答:21?(x?y)ds?(0,1)A(1,0)B.L与则2.设是连接两点的直线段,L2.答:22n??dsx)?y?(),2?sint(0?tL:x?acost,y?a则3.设.L2a?1?a2.答:22??)dsx??y(.),(0?t?2L:x?acost,y?asint4.设则L.答:02221y?x???.L?sxI?d是圆周,则5.设L答:.?tttez?sintcost,y?e?:x?e,t02的这段弧,从变到,6.设上相应于则曲线22?)ds?y(x?.积分L3:答.2?)e(1?22xy4?(0,0)A2)(1,BL到点为曲线上从点,的弧段7.设?y1?xds?.则L3.答:三、解答题1.计算下列对弧长的曲线积分:2??sdxx?yxy?.其中为由直线(1)与抛物线所围区域的整个边界L1.答:1)??62(551222yx?222??sdey?xay?x?Lx轴在第一象限内为圆周(2)直线,其中及L所围成的扇形的整个边界.a??a??2.2?e答:??4??2?y政法sxA,B,C,DABCD(0,0,0)?、依次为点,其中为折线,这里(3)?(1,0,2)(1,3,2)(0,0,2).、、.9.答:2??syd)2t?t)(0?sint),y?a(1?cosx?a(t?L.(4)为摆线一拱其中L423.?32a?答:53x?a(cost?tsint)?22??s)d(x?y)2(0?t?L.(5)其中为曲线?y?a(sint?tcost)L?232??).a22(1?答:§10.2对坐标的曲线积分一、选择题???sinydx?sinxdy?,0)A(0,()BAB(为由的直线段,则到1.设).AB0(D)(C)(C)(A)(B)1?21.答.;;;22yx2?)dx?y?(xC1??(,其方向为逆时针,表示椭圆则).2.设22abC2?b?a0ab(D)(B)(B)(C)(A)1.答.;;;CB(2,3)(1,1)A的直线段为由,则到3.设?(x?3y)dx?(y?2x)dy?().C22??[(x?2x?1)?(2x?1?3?[(x?2x)?(2x3x)]dxx)]dx(B)(A);1122??x?1)]d?2(5x[(7x?3)x1)]d[(7x?3)?(5x?(D)(C)(C).;.答11?tsin,y?x?costC)??t(0,4.设曲线的方程为222??xdydy?yxx)则(C??22??t)dtttsintcost)]d?sin(cossin[costt?(B)(A);2200???dtdt1???tsintcostsint?cos(D)(C)(D)td.答;.22222sint2cost000f(u)L为以原点为心的单位圆,则必有(,连续可导).5.设2222????)(xdy?y?(0)d?dyxf(?)(xxyy?fxydx)?0(B)(A);LL.2222????)(xdx?ydydy)?0)?f(xxf(0?y?)(dx?y(A)(C)(D).答.;LLy?1?x?1CA(2,0)O(0,0)到的线折线折到段6.设,是从则沿?xdy?ydx?()C0?2(D)(C)(A)(C)(B)21?.答;;.;二、填空题?P(x,y)dx?.xoyLa?x1.为上的一段平面内直线,则L0.答:222?.?)d?y(xxx?y(2,4)(0,0)AOL到的一段弧,上从则2.设为L56?.答:15222?.?yy(x)d?x?y(2,4)OA(0,0)L上从的一段弧3.设为到,则L40?.答:32?xydy?.(2,2)ALx?4xy?上从原点到4.则为圆弧的一段弧,L4.答:3222(a???a)a?y0)(xLx轴所围成的在第一象限的区域为圆周.设及5?.?yxyd则(按逆时针方向绕行),的整个边界L3?a?.答:2??(x?2y)dx?(2x?3y)dy??9xoyL平面上简单闭曲线,为.设6方,其中LLD的面积等于所围成的平面区域向为逆时针.则.3.答:2三、解答题?(x?y)dx?(y?x)dyL为1.计算:,其中L.2x?y(1,1)(4,2)的一段弧上从;(1)抛物线到(1,1)(4,2)的一直线段;到点(2)从点(1,1)(1,2)(4,2)的折线;,(3)先沿直线从点然后再沿直线到点到点22?1y?t?t?1,x?2t(1,1)(4,2)的一段弧.到点上从点(4)曲线3432.(4)(3)(1)14;;(2)11;答案:33??yd?xydxttRsint,y?cosx?RL的为圆周到从上对应其中.2计算02L一段弧.答:0.(x?y)dx?(x?...