基于混沌局部搜索算子的人工蜂群算法摘要:在求解函数优化问题时,为了提升人工蜂群算法局部搜索能力,提出了一种新颖的混沌蜂群算法。新算法设计了一种混沌局部搜索算子,并将其嵌入蜂群算法框架中;该算子不仅能够实现在最优食物源周围局部搜索,还能够随着进化代数增加使搜索范围不断缩小。仿真实验结果表明,与人工蜂群算法相比,新算法在rosenbrock函数上,求解精度和收敛速度明显占优;此外新算法在多模函数griewank和rastrigin上,收敛速度明显占优。关键词:优化;混沌;人工蜂群算法;局部搜索artificialbeecolonyalgorithmbasedonchaoslocalsearchoperatorwangxiang1*,lizhi.yong2,xuguo.yi3,wangyan4(1.schoolofcivilengineering,zhengzhouinstituteofaeronauticalindustrymanagement,zhengzhouhenan450015,china;2.departmentofmathematicsandphysics,zhengzhouinstituteofaeronauticalindustrymanagement,zhengzhouhenan450015,china;3.schoolofaccounting,zhengzhouinstituteofaeronauticalindustrymanagement,zhengzhouhenan450015,china;4.departmentofcomputerscienceandapplication,zhengzhouinstituteofaeronauticalindustrymanagement,zhengzhouhenan450015,chinaabstract:inordertoimprovetheabilityofartificialbeecolonyalgotithmatexploitation,anovelchaos-artificialbeecolonyalgorithmisproposedforcontinuousfunctionoptimizationproblems.anewchaoticlocalsearchoperatorisembeddedintheframeworkofthenewalgorithm.thenewoperator,whosesearchradiusshrinkswiththeevolutiongeneration,candothelocalsearcharoundthebestfoodsource.thesimulationresultsshowthat:comparedwiththoseofartificialbeecolonyalgorithm,thesolutionqualityandtheconvergencespeedofthenewalgorithmarebetterforrosenbrockandtheconvergencespeedofthenewalgorithmisbetterforgriewankandrastrigin.inordertoimprovetheabilityofartificialbeecolony(abc)algorithmatexploitation,anewchaosartificialbeecolony(ch.abc)algorithmwasproposedforcontinuousfunctionoptimizationproblems.anewchaoticlocalsearchoperatorwasembeddedintheframeworkofthenewalgorithm.thenewoperator,whosesearchradiusshrinkswiththeevolutiongeneration,candothelocalsearcharoundth---本文来源于网络,仅供参考,勿照抄,如有侵权请联系删除---ebestfoodsource.thesimulationresultsshowthat:comparedwiththoseofabcalgorithm,thesolutionqualityandtheconvergencespeedofthenewalgorithmarebetterforrosenbrockandtheconvergencespeedofthenewalgorithmisbetterforgriewankandrastrigin.keywords:optimization;chaos;artificialbeecolony(abc)algorithm;chaosartificialbeecolony(ch.abc)algorithm;localsearch0引言2005年提出的人工蜂群[1-4](artificialbeecolony,abc)算法是一种新颖的群智能算法,它具有全局寻优能力强的特点,故被广泛应用于无约束优化问题[5-8]以及离散优化问题[9]。近来,文献[5-8]都指出,求解函数优化问题时,abc算法存在全局探索能力强、局部开采能力差的缺陷,尤其是针对rosenbrock函数求解能力较差。为了增强abc算法的局部搜索能力,本文利用混沌序列的随机性、遍历性和规律性,设计了一种混沌局部搜索算子,并将其嵌入蜂群算法框架中,从而提出了新颖的混沌蜂群(chaosartificialbeecolony,ch.abc)算法。针对5个标准benchmark函数的仿真实验结果表明,新算法增强了abc算法的局部搜索能力,进而在一定程度上提升了求解质量。1混沌蜂群算法本文设计了一种新颖的ch.abc算法,其基本思想是利用混沌序列的随机性、遍历性和规律性,设计了一种混沌搜索算子,实现了在当前最优解周围进行局部搜索的目的,进而增强了abc算法的开采能力。1.1混沌蜂群算法的步骤新设计的ch.abc算法具体的实现步骤如下。步骤1食物源初始化。随机生成初始食物源种群的相关信息。步骤2雇佣...