稀疏互联联想记忆及其复杂网络实现

信号与信息处理专业毕业论文[精品论文]稀疏互联联想记忆及其复杂网络实现关键词:联想记忆人工神经网络神经元稀疏互联摘要:联想记忆网络模拟人脑信息存储及回忆机制,具有对含噪及不完全信息的鲁棒处理能力,因而在人工智能、模式识别等领域获得了广泛的研究与应用。复杂网络关注系统结构与功能之间的关系,是近年来研究复杂系统的新视角、新方法。模拟大脑神经学习机理的联想记忆模型其本质表现为一种复杂的非线性动力学系统,同时,生物脑神经系统中普适存在着复杂网络中典型的小世界效应和无标度特性。因此,从复杂网络角度出发,研究稀疏互联联想记忆模型实现就成为了一种新颖的思路。本文借鉴复杂网络研究结构与功能关系新思想,从网络体系结构角度出发,深入而系统地从理论分析和应用实例两方面进行交替互补研究,着重探讨了神经元间稀疏互联方式对于网络联想记忆性能的影响,并构建了相应的复杂网络体系结构下的稀疏互联联想记忆模型。论文的主要工作及创新点包括:(1)综述了联想记忆神经网络相关研究工作,指出其在生物学建模的合理性及硬件实现时存在的问题,分析了采用复杂网络思想研究稀疏互联联想记忆的可行性,提出了从网络体系结构角度出发,从神经元稀疏互联方式入手,借鉴复杂网络研究思想和生物神经系统中普遍存在的复杂网络性质,展开对稀疏互联联想记忆模型理论及应用两方面进行研究的新的思路和方法。(2)借鉴复杂网络研究背景及生物神经系统本身所具有的广泛稀疏连接的内在特点,研究了一类广义稀疏互联联想记忆网络的实现。它可以将现有的各种基于复杂网络结构体系的稀疏互联联想记忆模型整合入一个统一的框架中,以概率统计分析为手段研究了具有任意连通度的稀疏互联联想记忆网络的动力学演化行为。(3)鉴于大脑皮层神经元突触连接中有限的代谢能量资源限制,使用信噪比分析方法,研究了传统全互联Hopfield网络基础上,有限连接代价限制条件下,网络最优稀疏互联结构的确定原则,以期在降低网络连接成本的同时,最大限度的维持网络性能。(4)研究了复杂网络小世界体系下的联想记忆实现问题,针对原始小世界网络捷径生成具有随机性,缺乏面向任务的确定性操作的缺陷,借鉴复杂动态网络中和谐统一的混合择优模型构建思想,考虑有限连接代价限制条件下网络结构最优稀疏原则引导的捷径生成方式,提出了一种新的小世界体系结构自适应联想记忆模型。新模型可根据学习任务的实际需求,有目的的选择捷径生成,构建任务自适应的网络结构,有效的实现了联想记忆。(5)模拟人脑功能区核磁共振成像所揭示的无标度特性,考虑神经元突触动态生成时融入复杂网络无标度模型形成中的“马太效应”,提出了一种结构动态择优的无标度联想记忆模型。该模型根据有限连接代价限制条件下网络互联结构最优稀疏原则,定义了节点间亲和度的概念,综合考虑了基于节点度值和节点亲和度共同驱动下的择优连接机制,从而同时具有较高的联想记忆性能及神经生物学背景。正文内容联想记忆网络模拟人脑信息存储及回忆机制,具有对含噪及不完全信息的鲁棒处理能力,因而在人工智能、模式识别等领域获得了广泛的研究与应用。复杂网络关注系统结构与功能之间的关系,是近年来研究复杂系统的新视角、新方法模拟大脑神经学习机理的联想记忆模型其本质表现为一种复杂的非线性动力学系统,同时,生物脑神经系统中普适存在着复杂网络中典型的小世界效应和无标度特性。因此,从复杂网络角度出发,研究稀疏互联联想记忆模型实现就成为了一种新颖的思路。本文借鉴复杂网络研究结构与功能关系新思想,从网络体系结构角度出发,深入而系统地从理论分析和应用实例两方面进行交替互补研究着重探讨了神经元间稀疏互联方式对于网络联想记忆性能的影响,并构建了相应的复杂网络体系结构下的稀疏互联联想记忆模型。论文的主要工作及创新点包括:(1)综述了联想记忆神经网络相关研究工作,指出其在生物学建模的合理性及硬件实现时存在的问题,分析了采用复杂网络思想研究稀疏互联联想记忆的可行性,提出了从网络体系结构角度出发,从神经元稀疏互联方式入手,借鉴复杂网络研究思想和生物神经系统中普遍存在的复杂网络性质...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?