.全国大学生竞赛历年试题名师精讲(非数学类)(2009——2013)..第五届全国大学生数学竞赛预赛试卷(非数学类)一、分共24分,要求写出重要步骤)解答下列各题(每小题6??n2?.n?sin41?lim1求极限1.?????22???sin?24nsinn1?4n?sin?1?因为;2解分)……(2n2?4n?1n????????lim?exp1?sin?lim1?sinnln原式??????22??????nn??n21?4n?1?4n?2n????????……………………………………………………………………………………;)…(2分1??????ne?explimnsin?explim?4)分……(2????22??????n??nn1?4n2?2n1?4n???????xsin?dx证明广义积分不是绝对收敛的2.x0???1n?xsin???dxa?a分)发散即可。……………………(解记,只要证明2nnx0?n?n???1?n?211???xdxdx?sinsinxa?分)…………因为(2。??????n???1n?n?1n?1?0n??2??a……………………………………发散,故由比较判别法而发散。??n?1n?0n?0n?分)2(????323xy2y?x32yx??的极值。确定,求xyy?由设函数3.222??0xy?yy?3x6?6xy?31分)………………(得方程两边对求导,解x??yx?x2????y?0?0??2yxx?x………(,得2故分)或,令y2??xy?022xy?2将代入所给方程得,1y?x??x??2y2,将代入所给方程得,…………………………………(2分)1?y?x?0,0?x????????22??x22?y2y??x4?xyyxxyx2?2y?2???y又??222xy?2?????0?0?202?0?????1y0,?0y???1?,??0y?2,x0y1,y0,?x????y1,?2??02?..????为极小值。…………………………(故3分)为极大值,1?2??1y?0y??3轴所围成的平上的点A作切线,使该切线与曲线及0xxy??x过曲线4.3,求点A的坐标。面图形的面积为41????33tx?y??t点的切线方程为曲线过A,t,t的坐标为设切点A解32t3;……………………………………………………………………………(2分)。t2??x轴交点的横坐标为令,由切线方程得切线与x0?y0从而作图可知,所求平面图形的面积t13???3331??t?ttS??tt??2t?xdx??,??4420??分)故A点的坐标为(4。……………………………………………………,11?xe?arctanxsinx?dxI?12)计算定积分二、(满分2x?cos1???0xxe?arctanearctanxsinxxsinx???dxI?dx?解22x1?1?coscosx?0???x?xearctanxsinx?xsinx?arctane??dx??dx…………………………………分)(422x1?cos1?cosx00???xxsinxsinx??xx???dxdx???arctane?arctane……………………(2分)22xx21?cos1?cos002??xsin???dx?分)……………………………………………………………(4??2x?2cos1??023??????x??arctancos分)(2…………………………………………………??082????xf????lim0???:。证明0xff且设,在处存在二阶导数三、(满分12分)0?xx0x??1???f收敛。级数??n??1?n??xf??lim?0得xf处可导必连续,由在解由于0?xx0x???xf???????limx?fx0?0?limf…………………………………………(2分)??x0x?x?0????????xf0xf?f????f0?lim?0lim2分)……………………………………(x0x?0x?x?0由洛必塔法则及定义???????????0xff?xffx11????lim0lim???limf分)…………………(322xx2x2?000?x0?xx?..1??f??n1??????0?flim分)……………………………(2所以221??n????n????11????f分)由于级数……收敛,从而由比较判别法的极限形式(3收敛。??2nn??1?n1?nb2??????????sinfdxx???,12分)设证明四、(满分ba?x???,f?0xfxma??????????从而有反函上严格单调增,所以解因为在,b??0faf?xx?bax,(2。分)数………………………………………………………………………………11??????????y0??,,Ba?ffA?b分)(则是………设的反函数,3f???mfxBb???yx???????????ydydxysinf?xsin???分),所以…又(3,则????BA?fxAa???211????????sinydy??ycossinydy?y…………………(2分)mmm000是一个光滑封闭曲面,方向朝外。给定第二型的曲面积分14分)设五、(满分???????333??dxdy??3dydz?z2y?I?yzxdzdx?x的值,使积分I。试确定曲面??最小,并求该最小值。围成的立体为V,由高斯公式解记?????222222??????dxdydz?33zxI?1?3x2?6yy?9z?3?dv?分)……………(3VV2220?3zx??2y1?,即是使得的最大空间区域的值最小,就要求VI为了使得????2222221?32V?y,x,yzzx??13xz?2y???:分)(,曲面3……取??ux?010???z,y?,x1?v1...