/*本程序主要实现的是车牌的定位与检测主要是利用申继龙论文里面的方法1、采集得到的图像2、把RGB图像转换成HSI彩色图像3、利用设定的H、S阈值得到二值图像4、对二值图像水平投影获得候选区域5、对候选区域的HSI图像边缘检测*/#include"stdafx.h"#include"opencv2/opencv.hpp"#include"opencv2/objdetect/objdetect.hpp"#include"opencv2/features2d/features2d.hpp"#include"opencv2/highgui/highgui.hpp"#include"opencv2/calib3d/calib3d.hpp"#include"opencv2/nonfree/nonfree.hpp"#include"opencv2/nonfree/features2d.hpp"#include"opencv2/imgproc/imgproc_c.h"#include"opencv2/legacy/legacy.hpp"#include"opencv2/legacy/compat.hpp"#include<iostream>#include<algorithm>#include<functional>#include<vector>#include<string>#include<stdlib.h>#include<stddef.h>#include<stdint.h>#include<math.h>usingnamespacestd;usingnamespacecv;#definepi3.14159265IplImage*srcImage=NULL;//存储原图片IplImage*srcImage1=NULL;//存储原始图片的副本IplImage*HSI=NULL;staticIplImage*grayImage=NULL;//存储原图片灰度图staticdoubleposdouble=0.0;IplImage*channelOneImage=NULL;IplImage*channelTwoImage=NULL;IplImage*channelThreeImage=NULL;IplImage*plateImage=NULL;//存储车牌图像IplImage*grayPlateImage=NULL;//存储车牌灰度图像vector<IplImage*>characterImageList;//存储7个车牌字符图像的容器vector<int>xList;//存储7个车牌字符的起始和结束位置vector<vector<KeyPoint>>keyPointsList;//存储车牌字符特征点的集合vector<Mat>descriptorsMatList;//存储每一个车牌字符的特征点描述子矩阵vector<vector<Point>>contours;//用来存储经过闭开操作处理后的车牌轮廓doubleGetH(intr,intg,intb){doubleH=0;//H分量doublefenZi=1/2.0*((r-g)+(r-b));doublesq=pow(double(r-b),2)+(r-b)*(g-b);doublefenMu=sqrt(sq);H=acos(fenZi/fenMu)*180/pi;if(b>g){H=360-H;}returnH;}doubleGetS(intr,intg,intb){doubles=0;//S分量intmin=r;if(g<r){min=g;if(b<g){min=b;}}else{if(b<r){min=b;}}s=1-3.0*min/((r+g+b)*1.0);returns;}doubleGetI(intr,intg,intb){doublei=0.0;i=1/3.0*(r+g+b);i=i/255.0;returni;}//通过公式来直接求H的值然后对H分量进行处理voiddoHByMath(IplImage*eleImage){intwidth=eleImage->width;intheight=eleImage->height;for(intcol=0;col<height;col++){uchar*ptr=(uchar*)(eleImage->imageData+col*eleImage->widthStep);//uchar*ptrGray=(uchar*)(grayImage->imageData+col*grayImage->widthStep);//for(introw=0;row<width;row++){intb=ptr[3*row];intg=ptr[3*row+1];intr=ptr[3*row+2];doubleH=GetH(r,g,b);doubleS=GetS(r,g,b);doubleI=GetI(r,g,b);if(H>=190H<=255S>0.3){ptrGray[row]=255;}else{ptrGray[row]=0;}if(I<0.25S<0.4){ptrGray[row]=0;}}}cvShowImage("H分量处理后的图像",grayImage);//考虑H分量处理后就提取尽量多的有用的区域vector<vector<cv::Point>>contours;Matmtx=grayImage;//把IplImage类型转换成Mat类型findContours(mtx,contours,CV_RETR_EXTERNAL,CV_CHAIN_APPROX_NONE);Matresult(mtx.size(),CV_8U,Scalar(255));drawContours(result,contours,-1,Scalar(0),2);imshow("轮廓图",result);}//以下代买判断是否为蓝色像素点//返回0代表是白色点//返回1代表是蓝色点intIsBlueOrWhite(IplImage*image,intcol,introw){CvScalars;s=cvGet2D(image,col,row);intb=s.val[0];intg=s.val[1];intr=s.val[2];doubleH=GetH(r,g,b);doubleS=GetS(r,g,b);doubleI=GetI(r,g,b);if(H>=190H<=255S>0.3){return1;}/*if(I<255S>0){}*//*doublegrayLevel=r*0.299+g*0.587+b*0.114;if(grayLevel>=200){return0;}*/boolflagWhite2=(I>=0.95)||(I>=0.81I<0.95S<(18.0/180.0))||(I>=0.61I<=0.8S<(20.0/180.0))||(I>=0.61I<=0.8S<(20.0/180.0))||(I>=0.51I<=0.6S<(30.0/180.0));boolflagWhite1=(S<=0.3I>=0.6);if(flagWhite1||flagWhite2){ret...