协同过滤算法研究综述

协同过滤算法研究综述摘要本文在介绍传统协同过滤算法的基础上,分析其存在的一些弊端,文章着重介绍了协同过滤算法的研究情况,目的是为协同过滤算法改进提供引导作用。关键字协同过滤;个性化推荐;稀疏性TP39文献标识码A1674-6708(2013)97-0232-02。引言随着网络和电子商务的迅猛发展,用户可以在网上随意寻找自己感兴趣的商品,但随肴信息爆炸式增长,用户在这过程中浪费了很多时间,个性化推荐系统对电子商务网站的业绩有很深的影响,其主要作用表现在以下儿方面:可以把随意浏览网站的潜在客户转变为实际购买者;提升电子商务网站交叉销售能力;提升客户对网站的忠诚度。其中协同过滤技术是目前运用最广泛的个性化推荐技术。1协同过滤算法协同过滤技术是通过收集整理过去用户产生的数据来寻找邻居用户,其基本原理是根据相似用户的兴趣来推荐当前用户没有参与但是很有可能会感兴趣的项目,所基于的假设是如果两个用户兴趣类似,那么很有可能当前用户会喜欢另一个用户所喜欢的项目。协同过滤推荐技术分为3个阶段:评分数据表示;最近邻居形成;推荐项目集产生1)评分数据表示:将用户对于项目的评分收集整理后描述成一个的用户-项评分矩阵,其中ni表述用户数,n表式项目数。矩阵中元素表述用户对项目的评分;2)最近邻居形成:指根据项目评分矩阵来发现目标用户的最近邻居。协同过滤技术是通过计算用户之间的相似性来找到目标用户的最近邻,所以算法的关键就在于如何准确找到目标用户的最近邻。常用的用户之间的相似度算法有Pearson相关系数和余弦相似性;3)推荐项目集产生:目标用户的最近邻居集产生后,可以得出目标用户对未评分项的预测分,将分值按照高低排列,产生TOP-N的推荐项目集合;这就导致了协同过滤技术过分依赖于用户评分,但目前电子商务网站的用户和商品数量一直在上升,同时用户对商品项的评分却非常稀少,通常在1%以下,使得用户-项目评分矩阵过于稀疏,导致个性化推荐质量下降:1)评分矩阵稀疏使得寻找最近邻的准确度降低;2)冷启动(cold-start)问题,此问题是稀疏性的极端情况,指当新用户或新项目进入到推荐系统中时,由于没有历史数据,导致无法产生推荐集。针对评分矩阵稀疏性问题许多研究人员对协同过滤算法提出了改进,本文系统的归纳和分析了各算法的研究情况,同时为协同过滤算法提供了几点研究方向。2改进的协同过滤算法综述2.1结合项目相似性和时间函数的协同过滤算法刘芳先等分析传统协同过滤算法的局限于以下三点:1)传统算法对于用户之间的相似度是通过两用户共同给予的项目评分来计算的,却没有考虑项目是否相关,如一用户对于某书籍的兴趣可能跟他看过的书有关,而跟他评价过的服装没关系;2)随着时间变化用户的兴趣也会变化的,这点传统算法却没有考虑到;3)传统的协同过滤算法在计算项目间相似性,没能将项目特征考虑在内,导致相似性度量不够准确。在此基础上刘芳先提出来改进算法,其主要思想是将项目的相关性引入到用户相似性的计算公式中,同时在预测新目标项的得分时引入了时间加权函数,时间加权函数能反映出用户对最近点击的项目兴趣较大,新数据对于预测得分影响大,而旧数据体现的是用户之前的兴趣,所以在预测上占权重较小。这种改进算法在计算用户相似性的时候引入项目相似度,这样可以在一定程度上减少不相关的项目对于推荐结果的影响,同时将时间函数引入了预测得分的公式中,一定程度上反映出随用户趣变化得到推荐集也不同。但是这算法依然对用户-项目评分矩阵依赖性太大,不利于解决数据稀疏性问题。刘勇在分析了计算项目相似度时碰到的问题:当两项目只有很少用户给予评分,同时给予评分的用户所关注的项目特征可能不是目标用户所关注的特征,这会导致推荐质量下降。基于这类问题,刘勇提出了改进的相似度计算公式:Mutual_num表示对于项目i、j都评分的用户数目,item_nuin表示对项目i,j中任何一个有评分的用户集合数目。2.2降维处理文献[7]为了降低项目评分矩阵的稀疏性,提升推荐精度,提出了一种基于主成分降维技术和K-means聚类的混合协同过滤新算法。算法先对用户-项目矩阵进行缺失值填充,然后运用主成分...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?