弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小方向、,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:Wk=-(kx22-kx12Ep=kx2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.1、质量为m的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上。平衡时,弹簧的压缩量为x0,如图3-15所示。物块从钢板正对距离为3X0的A处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动。已知物体质量也为m时,它们恰能回到O点,若物块质量为2m,仍从A处自由落下,则物块与钢板回到O点时,还具有向上的速度,求物块向上运动到最高点与O点的距离。【分析解答】物块从3x0位置自由落下,与地球构成的系统机械能守恒。则有v0为物块与钢板碰撞时的的速度。因为碰撞板短,内力远大于外力,钢板与物块间动量守恒。设v1为两者碰撞后共同速mv0=2mv1(2)两者以vl向下运动恰返回O点,说明此位置速度为零。运动过程中机械能守恒。设接触位置弹性势能为Ep,则同理2m物块与m物块有相同的物理过程碰撞中动量守恒2mv0=3mv2(4)所不同2m与钢板碰撞返回O点速度不为零,设为v则因为两次碰撞时间极短,弹性形变未发生变化Ep=E’p(6)由于2m物块与钢板过O点时弹力为零。两者加速度相同为g,之后钢板被弹簧牵制,则其加速度大于g,所以与物块分离,物块以v竖直上抛。【评析】本题考查了机械能守恒、动量守恒、能量转化的。守恒等多个知识点。是一个多运动过程的问题。关键问题是分清楚每一个过程。建立过程的物理模型,找到相应解决问题的规律。弹簧类问题,画好位置草图至关重要。2.如图9所示,一劲度系数为k=800N/m的轻弹簧两端各焊接着两个质量均为m=12kg的物体A、B物体。A、B和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力F在上面物体A上,使物体A开始向上做匀加速运动,经物体B刚要离开地面,设整个过程中弹簧都处于弹性限度内,取g=10m/s2,求:(1)此过程中所加外力F的最大值和最小值。(2)此过程中外力F所做的功。解:(1)A原来静止时:kx1=mg①当物体A开始做匀加速运动时,拉力F最小,设为F1,对物体A有:F1+kx1-mg=ma②当物体B刚要离开地面时,拉力F最大,设为F2,对物体A有:F2-kx2-mg=ma③对物体B有:kx2=mg④对物体A有:x1+x2=⑤由①④两式解得、a2,分别由②③得、F1=45N,F2=285N(2)在力F作用的内,初末状态的弹性势能相等,由功能关系得:WF=mg(x1+x2)+3.质量为m的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上.平衡时,弹簧的压缩量为x0,如图1-9-153x0的Am时,它们恰能回到O2m,仍从A处自由落下,则物块与钢板回到OO点的距离.ABF图9解:质量为对于m:第二阶段,根据动量守恒有mv0=2mv1②对于2m物块:第二阶段,根据动量守恒有2mv0=3mv2④第三阶段,根据系统的机械能守恒有又因E′p=Ep⑦上几式联立起来可求出:l=x0/24、A、B两木块叠放在竖直轻弹簧上,如图9-6所示,已知木块A、B质量分别为0.42kg和0.40kg,弹簧的劲度系数k=100N/m,若在木块A上作用一个竖直向上的力F,使A由静止开始以0.5m/s2的加速度竖直向上做匀加速运动(g=10m/s2).(1)使木块A竖直做匀加速运动的过程中,力F的最大值;(2)若木块由静止开始做匀加速运动,直到A、B分离的过程中,弹簧的弹性势能减少了0.248J,求这一过程F对木块做的功.命题意图:考查对物理过程状态的综合分析能力、.B级要求.错解分析:此题难点和失分点在于能否通过对此物理过程的分析后,确定两物体分离的临界点,即当弹簧作用下的两物体加速度速度相同且相互作用的弹力、N=0时,恰好分离.解题方法与技巧:当F=0(即不加...