那些神秘的数学常数

那些神秘的数学常数我一直觉得,数学中的各种常数是最令人敬畏的东西,它们似乎是宇宙诞生之初上帝就已经精心选择好了的。那一串无限不循环的数字往往会让人陷入一种无底洞般的沉思——为什么这串数字就不是别的,偏偏就是这个样呢。除了那些众所周知的基本常数之外,还有很多非主流的数学常数,它们的存在性和无理性同样给它们赋予了浓重的神秘色彩。今天,就让我们一起来看一看,数学当中到底有哪些神秘的无理常数。√2≈1.4142135623730950488古希腊的大哲学家Pythagoras很早就注意到了数学与大千世界的联系,对数学科学的发展有着功不可没的贡献。他还创立了在古希腊影响最深远的学派之一——Pythagoras学派。Pythagoras学派对数字的认识达到了审美的高度。他们相信,在这个世界中“万物皆数”,所有事物都可以用整数或者整数之比来描述。第一个无理数√2的发现者就是一位Pythagoras学派的学者,他叫做Hippasus。据说,一日Hippasus向Pythagoras提出了这样的问题:边长为1的正方形,对角线长度能用整数之比来表示吗?Pythagoras自己做了一些思考,证明了这个数确实无法用整数之比来表示。由于这一发现触犯了学派的信条,因此Pythagoras杀害了Hippasus。利用勾股定理可知,这个数是方程x^2=2的唯一正数解,我们通常就记作√2。√2可能是最具代表性的无理数了,我们之前曾经介绍过很多√2的无理性的证明。无理数的出现推翻了古希腊数学体系中的一个最基本的假设,直接导致了第一次数学危机,整座数学大厦险些轰然倒塌。无理数虽说无理,在生产生活中的用途却是相当广泛。例如,量一量你手边的书本杂志的长与宽,你会发现它们的比值就约为1.414。这是因为通常印刷用的纸张都满足这么一个性质:把两条宽边对折到一起,得到一个新的长方形,则新长方形的长宽之比和原来一样。因此,如果原来的长宽比为x:1,新的长宽比就是1:x/2。解方程x:1=1:x/2就能得到x=√2。圆周率π≈3.1415926535897932385不管圆有多大,它的周长与直径的比值总是一个固定的数。我们就把这个数叫做圆周率,用希腊字母π来表示。人们很早就认识到了圆周率的存在,对圆周率的研究甚至可以追溯到公元以前;从那以后,人类对圆周率的探索就从未停止过。几千年过去了,人类对圆周率的了解越来越多,但却一直被圆周率是否有理的问题所困扰。直到1761年,德国数学家Lambert才证明了π是一个无理数。π是数学中最基本、最重要、最神奇的常数之一,它常常出现在一些与几何毫无关系的场合中。例如,任意取出两个正整数,则它们互质(最大公约数为1)的概率为6/π^2。自然底数e≈2.7182818284590452354在17世纪末,瑞士数学家Bernoulli注意到了一个有趣的现象:当x越大时(1+1/x)^x将会越接近某个固定的数。例如,(1+1/100)^100≈2.70481,(1+1/1000)^1000≈2.71692,而(1+1/10000)^10000则约为2.71815。18世纪的大数学家Euler仔细研究了这个问题,并第一次用字母e来表示当x无穷大时(1+1/x)^x的值。他不但求出了e≈2.718,还证明了e是一个无理数。e的用途也十分广泛,很多公式里都有e的身影。比方说,如果把前n个正整数的乘积记作n!,则有Stirling近似公式n!≈√2πn(n/e)^n。在微积分中,无理数e更是大显神通,这使得它也成为了高等数学中最重要的无理数之一。黄金分割φ=(1+√5)/2≈1.6180339887498948482把一根线段分为两段,分割点在什么位置时最为美观?分在中点处,似乎太对称了不好看;分在三等分点处,似乎又显得有些偏了。人们公认,最完美的分割点应该满足这样一种性质:较长段与较短段的长度比,正好等于整条线段与较长段的长度比。这个比值就叫做黄金分割,用希腊字母φ来表示。若令线段的较短段的长度为1,则φ就满足方程φ=(1+φ)/φ,可解出φ=(1+√5)/2。在美学中,黄金分割有着不可估量的意义。在那些最伟大的美术作品中,每一个细节的构图都充分展示了黄金分割之美。在人体中,黄金分割也无处不在——肘关节就是整只手臂的黄金分割点,膝关节就是整条腿的黄金分割点,而肚脐则位于整个人的黄金分割点处。在数学中,黄金分割φ也展示出了它的无穷魅力。例如,在正五角星中,同一条线上三个点A、B、C就满足...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

确认删除?