三角函数基本性质及基本运用

三角函数一、三角函数的基本概念1.角的概念的推广(1)角的分类:正角(逆转)负角(顺转)零角(不转)(2)终边相同角:(3)直角坐标系中的象限角与坐标轴上的角.2.角的度量(1)角度制与弧度制的概念(2)换算关系:(3)弧长公式:扇形面积公式:3.任意角的三角函数注:三角函数值的符号规律“一正全、二正弦、三双切、四余弦”二、同角三角函数的关系式及诱导公式(一)诱导公式:函数-tan与的三角函数关系是“奇变偶不变,符号看象限”。如:等。(二)同角三角函数的基本关系式:①平方关系;②商式关系;③倒数关系;。(三)关于公式的深化;;如:;注:1、诱导公式的主要作用是将任意角的三角函数转化为~角的三角函数。2、主要用途:a)已知一个角的三角函数值,求此角的其他三角函数值(①要注意题设中角的范围,②用三角函数的定义求解会更方便);b)化简同角三角函数式;证明同角的三角恒等式。三、两角和与差的三角函数(一)两角和与差公式(二)倍角公式1、公式cos2α=sin2α=注:(1)对公式会“正用”,“逆用”,“变形使用”。(2)掌握“角的演变”规律(3)将公式和其它知识衔接起来使用。(4)倍角公式揭示了具有倍数关系的两个角的三角函数的运算规律,可实现函数式的降幂的变化。2、两角和与差的三角函数公式能够解答的三类基本题型:(1)求值①“给角求值”:给出非特殊角求式子的值。仔细观察非特殊角的特点,找出和特殊角之间的关系,利用公式转化或消除非特殊角②“给值求值”:给出一些角得三角函数式的值,求另外一些角得三角函数式的值。找出已知角与所求角之间的某种关系求解③“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。④“给式求值”:给出一些较复杂的三角式的值,求其他式子的值。将已知式或所求式进行化简,再求之三角函数式常用化简方法:切割化弦、高次化低次注意点:灵活角的变形和公式的变形,重视角的范围对三角函数值的影响,对角的范围要讨论(2)化简①化简目标:项数习量少,次数尽量低,尽量不含分母和根号②化简三种基本类型:根式形式的三角函数式化简、多项式形式的三角函数式化简、分式形式的三角函数式化简③化简基本方法:用公式;异角化同角;异名化同名;化切割为弦;特殊值与特殊角的三角函数值互化。(3)证明①化繁为简法②左右归一法③变更命题法④条件等式的证明关键在于分析已知条件与求证结论之间的区别与联系。无论是化简还是证明都要注意:(1)角度的特点(2)函数名的特点(3)化切为弦是常用手段(4)升降幂公式的灵活应用四、三角函数的性质y=sinxy=cosxy=tanxy=cotx图象定义域x∈Rx∈Rx≠kπ+(k∈Z)x≠kπ(k∈Z)值域y∈[-1,1]y∈[-1,1]y∈Ry∈R奇偶性奇函数偶函数奇函数奇函数单调性在区间[2kπ-,2kπ+]上都是增函数在区间[2kπ+,2kπ+]上都是减函数在区间[2kπ-2kπ]上都是增函数在区间[2kπ,2kπ+π]上都是减函数在每一个开区间(kπ-,kπ+)内都是增函数在每一个开区间(kπ,kπ+π)内都是减函数周期T=2πT=2πT=πT=π对称轴无无对称中心五、已知三角函数值求角1、反三角概念:(1)若sinx=a则x=arcsina,说明:a>0,arcsina为锐角;a=0,arcsina=0;a<0,arcsina为“负锐角”。(2)若cosx=a则x=arccosa说明:a>0,arccosa为锐角;a=0,arccosa=900;a<0,arccosa为钝角。(3)若tanx=a则x=arctana说明:a>0,arctana为锐角;a=0,arctana=0;a<0,arctana为“负锐角”。如;arcsin,arcsin.arccos,arctan3>,而arctan(-3)=--arctan3.而sin(arcsin不存在。2、反三角关系:(1)arcsin(-x)=-arcsinax;arctan(-x)=arctanx;arcos(-x)=-arccosx由此可知:是匠函数,而非奇非偶。(2)arcsinx+arccosx=3、时求角:sinx=a六、三角函数的最值(1)配方法求最值主要是利用三角函数理论及三角函数的有界性,转化为二次函数在闭区间上的最值问题,如求函数的最值,可转化为求函数上的最值问题。(2)化为一个角的三角函数,再利用有界性求最值:(3)换元法求最值①利用换元法将三角函数问题转化为代数函数,此时常用万能公式和判别式求最值。②利用三角代换将代数问题转化为三角函数,然而利用三角函数的有界性等求最值。

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

确认删除?