高中人教选修1-1数学公式5页

数学公式(Part1)1.真值表pq非pp或qp且q真真假真真真假假真假假真真真假假假真假假2.常见结论的否定形式原结论反设词原结论反设词是不是至少有一个一个也没有都是不都是至多有一个至少有两个大于不大于至少有n个至多有(n1)个小于不小于至多有n个至少有(1n)个对所有x,成立存在某x,不成立p或qp且q对任何x,不成立存在某x,成立p且qp或q3.四种命题的相互关系原命题互逆逆命题若p则q若q则p互互互为为互否否逆逆否否否命题逆否命题若非p则非q互逆若非q则非p4.充要条件(1)充分条件:若pq,则p是q充分条件.(2)必要条件:若qp,则p是q必要条件.(3)充要条件:若pq,且qp,则p是q充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.6.常见三角不等式(1)若(0,2)x,则sintanxxx.(2)若(0,2)x,则1sincos2xx.(3)|sin||cos|1xx.7.同角三角函数的基本关系式22sincos1,tan=cossin,tan1cot.9.和角与差角公式sin()sincoscossin;cos()coscossinsin;tantantan()1tantan.22sin()sin()sinsin(平方正弦公式);22cos()cos()cossin.sincosab=22sin()ab(辅助角所在象限由点(,)ab的象限决定,tanba).10.二倍角公式sin2sincos.2222cos2cossin2cos112sin.22tantan21tan.11.三角函数的周期公式函数sin()yx,x∈R及函数cos()yx,x∈R(A,ω,为常数,且A≠0,ω>0)的周期2T;函数tan()yx,2,xkkZ(A,ω,为常数,且A≠0,ω>0)的周期T.12.正弦定理2sinsinsinabcRABC.52.余弦定理2222cosabcbcA;2222cosbcacaB;2222coscababC.13.面积定理(1)111222abcSahbhch(abchh、、h分别表示a、b、c边上的高).(2)111sinsinsin222SabCbcAcaB.(3)221(||||)()2SOABOAOBOAOB�.14.三角形内角和定理在△ABC中,有()ABCCAB222CAB222()CAB.特别地,有sinsin(1)()kkkZ.scos2()cokkZ.tantan()kkZ.17.常用不等式:(1),abR222abab(当且仅当a=b时取“=”号).(2),abR2abab(当且仅当a=b时取“=”号).(3)3333(0,0,0).abcabcabc(4)柯西不等式22222()()(),,,,.abcdacbdabcdR(5)bababa.18.极值定理已知x,y都是正数,则有(1)若积xy是定值p,则当xy时和xy有最小值p2;(2)若和xy是定值s,则当xy时积xy有最大值241s.推广已知Rxy,,则有xyyxyx2)()(22(1)若积xy是定值,则当||xy最大时,||xy最大;当||xy最小时,||xy最小.(2)若和||xy是定值,则当||xy最大时,||xy最小;当||xy最小时,||xy最大.19.一元二次不等式20(0)axbxc或2(0,40)abac,如果a与ax2bxc同号,则其解集在两根之外;如果a与ax2bxc异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()xxxxxxxxx;121212,()()0()xxxxxxxxxx或.20.含有绝对值的不等式当a>0时,有22xaxaaxa.22xaxaxa或xa.24椭圆22221(0)xyabab焦半径公式)(21caexPF,)(22xceaPF.25.椭圆的的内外部(1)点00(,)Pxy在椭圆22221(0)xyabab的内部2200221xyab.(2)点00(,)Pxy在椭圆22221(0)xyabab的外部2200221xyab.26.椭圆的切线方程(1)椭圆22221(0)xyabab上一点00(,)Pxy处的切线方程是00221xxyyab.(2)过椭圆22221(0)xyabab外一点00(,)Pxy所引两条切线的切点弦方程是00221xxyyab.(3)椭圆22221(0)xyabab与直线0AxByC相切的条件是22222AaBbc.27.双曲线22221(0,0)xyabab的焦半径公式21|(a)|PFexc,22|()|aP...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

文秘专家
机构认证
内容提供者

1

确认删除?