高考数学尖子生辅导专题(文理通用)之专题07圆锥曲线中的最值与范围-高考数学尖子生辅导专题

专题七圆锥曲线中的最值与范围“以能力立意命题”是考试大纲总的要求,也是高考命题总的方向.对学生能力的考察离不开思想方法的考察,在圆锥曲线的背景下讨论最值或范围问题,能系统的将函数与方程的思想、数形结合思想等多种数学思想结合在一起,更利于综合考察学生的能力.模块1整理方法提升能力圆锥曲线中的最值与范围问题的类型较多,解法灵活多变,但总体上主要有以下3种方法:方法1:几何法.若题目的条件或结论能明显体现几何特征及意义,则考虑利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解.方法2:代数法.把所求的量表示为某个(某些)参数的函数解析式,然后利用函数方法、不等式方法等进行求解.对于大多数题目来说,主要是选择一个参数去表示所求的量,从而把问题转化为求函数的值域问题.由于引进的参数往往不只一个,所以解题时通常涉及到消参问题.如果用两个参数去表示所求的量(不能通过消参留下一个未知数),则往往考虑使用均值不等式.方法3:不等式(组)法.由题目所给的条件寻找所求量满足的不等式(组),通过该不等式(组)的求解得到所求量的最值或取值范围.上述三种方法中,方法主要在小题中体现,解答题中以方法2最为常见.例1已知抛物线的顶点为,焦点为.(1)求抛物线的方程;(2)过点作直线交抛物线于、两点,若直线、分别交直线:于、两点,求的最小值.【解析】(1)由题意可设抛物线的方程为(),则,即,所以抛物线的方程为.(2)设,,直线的方程为.由,消去,可---本文来源于网络,仅供参考,勿照抄,如有侵权请联系删除---得,从而,,.由,解得点的横坐标为,同理可得点的横坐标为.由弦长公式可得,于是,其中.法1:令,则,所以,所以,令,则,,当,即,时,有最小值,所以有最小值.法2:,令,则,所以,所以.当时,,取负数时,有,所以.于是当,即,有最小值,所以有最小值.【点评】利用代数法求最值或范围问题,其难点在于选用一个(或两个)参数去表示目标函数.我们常常可以从直线的斜率、截距、点的坐标等角度引进参数,然后根据题目所给的条件消去参数,直至剩下一个参数或两个参数(以一个参数的情况占绝大多数).本题---本文来源于网络,仅供参考,勿照抄,如有侵权请联系删除---总共引进了7个参数:、、、、、和,最终是用参数表示,而其余的6个参数只是中间过渡的量,要注意体会如何利用“设而不求”的思想消去这6个中间过渡的参数.的表达式有两个特点:一是分式,二是分子和分母的最高次数一致.求这种特点的函数最值的常见方法有两种,一是将分子或分母看成一个整体,最多经历两次换元得到一个二次函数;二是分离参数,再使用基本不等式.法2在分离参数后,需要换元才能使用基本不等式,因此法2比法1的二次函数法要复杂很多.例2设椭圆()的右焦点为,右顶点为.已知,其中为原点,为椭圆的离心率.(1)求椭圆的方程;(2)设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点.若,且,求直线的斜率的取值范围.【解析】(1)设,由,即,,又,所以,因此,所以椭圆的方程为.(2)设直线的斜率为(),则直线的方程为.设,,.在△中,,即,化简得.由方程组,消去,整理得.于是,从而.由(1)知,所以,---本文来源于网络,仅供参考,勿照抄,如有侵权请联系删除---,由,得,所以,解得,因此直线的方程为.由方程组,消去,解得.于是,解得或,所以直线的斜率的取值范围为.【点评】由,可得到不等式,此时只要用去表示,就能得到有关的不等式,这也是需要满足的唯一一个不等式,解这个不等式就能求出的取值范围.例3已知椭圆:的焦点在轴上,是的左顶点,斜率为()的直线交于、两点,点在上,.(1)当,时,求△的面积;(2)当时,求的取值范围.【解析】(1)当时,椭圆的方程为,直线的方程为.联立,消去可得,于是,---本文来源于网络,仅供参考,勿照抄,如有侵权请联系删除---所以.同理,.由可得,化简可得,即,解得.(2)直线的方程为.联立,消去可得,于是,所以....

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?