《高等数学》自考复习题00022代号:00020、一、单项选择题0,x?cosx??)(xfC).,则(1.设函数?0,x?0????)f(?()f)2(0)?f(f.=A.B44?2?)f()?2f(0)?f(D.=C.24A)是偶函数.2.下列函数中,(33xx(x)?sinf1?(x)?xfA.B.2?xxxsinx))?aa??xf(f(xD.C..A)3.下列极限存在的有(12x1limlimexsinlimlimxD.AB.C..2x1?x1?2??x0?x0x???xB)4.下列变量中,是无穷小量的为(1?)0(xln?)1(x?lnxA.B.x12x??)e(x?0)2(x?xC.D.24x??)f?(xf(x??x)?coslimxf()?,则).(A.若5x?40??x??2sin?sinD.A.0B.C.244?)f(xy(x)?0?f.)的(C的点是函数6.满足方程.驻点B.极小值点CD.间断点.极大值点A??ca7收敛,)收敛.为常数,则级数(.若正项级数Bn1?n????????2)c?(aca)ca?a(.BA..C.Dnnnn1n1?1?n1?nn?1????}S{aa)成立,则收敛.的部分和,若条件(是级数8.设Dnnn1?n?1nSS0?lima0?limSC.A.D有界B..单调减少nnnn??n??n)中的两个函数相等.(C9.下列各函数对中,22)?(xf(x)g(x)?(x)?xxgx)?f(x(B),(A),34xlnx)?lnx?f(f(x)g(x)g(x)?3lnx?4lnx(D),,(C)x?0时,变量(C)是无穷小量.11.当1sinx(B)(A)xx2xx1?e(C)(D)3xf(1?2h)?f(1))xf(?lim1x?(在点D)处可导,则.12.设h0h???(1)1)?ff((A)(B)??)(2f1(1)?2f(C)(D)2?2xx?3y?(2,4)内满足(B在区间)..函数13(A)先单调上升再单调下降(B)单调上升(C)先单调下降再单调上升(D)单调下降??x)?cosf(x(x)dxf?(.若B,则).14cosx?ccsinx?(A)(B)?cosx?cc?sinx?(C)(D)π7??2)dx?x(xcosx?22(D.).15π?2π0(B)(A)π2π(D)(C)21?(x)x)f?f((的一个原函数是,则B).16.若x2xln(B)(A)3x11?(C)(D)2xx3?xcos)x?xx(f的图形关于对称。、函数17(D)2B.轴A.坐标原点D.C.轴11?nsinlim()sinn?18、(A)。nn??n∞D.B.0C.1A.-15??3x??x)(D},19、设A={x|-3则有.},B={x|0B??BB)?B)???BC.(AD.(AA.ABB.A)20..函数内满足(在区间B(B)先单调下降再单调上升单调上升(A)(C)(D)单调下降先单调上升再单调下降C21)成立..设是的一个原函数,则等式((A);;(B)(D);(C)B(.下列微分方程中,22)是线性微分方程.3(B)(A)(D)(C)?1sinx,x????(x)f)?f(=23(C).设函数.,则?41,x?0??22A-D1CB....02224.下列极限存在的有(D).12x11limelimsinlimlimxAD.B..C.2xxxx?1?20?x0x?0x?0?xxlnyd?y25.,则).=设(Bx11?lnx1?lnx?lnx?1xlnxddxD.A.C.B.2222xxxx)?x(f??)fF(x?(x)xd26,则.若(=A).x1C??x)F?2(C(??x)FA..Bx1C?(?Fx)C??xF(?)C.D.2??}{Su27.A设有界是级数收敛的(为数项级数,其部分和数列).nn1n?A.充分但非必要条件B.必要但非充分条件C.必要充分条件D.既非充分又非必要条件x1?y?e28B的反函数是(.函数).)yxy?ln?1?ln(1x?AB..)?ln(y?lny?x1?x1C.D.x??)x(fC?1x??xdx(f)2?31..若D(,则)4x122x?1xxx?x?12?122??12ln..B.DCA.2ln2).32.下列级数中不收敛的是(A??1n??nn)?1()?1(B.A.1n?n1n?1n???11??nn)1(?)(?1..CD2n23n1n?1n???43,1,2,x?C)33.设自变量,判断下列数学结构哪个不是函数?(42312341??????:?f:??))(B(A1111?1102423341112??h:???y:????(C)(D)4312412301?f(x).的定义域是(34.设函数D)22?xx?)???1,,?1)?(??(??,??)(.B.A)2,??,2)?(,??)(???1)?(?12(??,2)?(,.C.D?1x?sinx,???x)f()?f(.,则(D35.)=设函数?41?0,x??22-D0A.B.1C..22sinaxlim=7,则a的值是(设D)36.x0?x1B1C5D7A7f(x)-f(x)00+2hlim等于则(D))=3,且在点37.已知函数f(x)x处可等,f′(x00h0h?A3B0C2D6223x与sin(x?5x)0?x)当38.比较是(时,D较低阶的无穷小量BA较高阶无穷小量等价无穷小量C同阶但不等价无穷小量D5-5),则y′等于(A+sinx39.设y=x-6-4-4-6-cosx+cosxB-5x+cosxC-5x-cosxD-5xA-5x2C)y=4-3x,则f′(1)等于(40.设A0B-1C-3D3x?41.(2e-3sinx)dx等于(A)?xxx-3cosxD1+3cosxC2eA2e+3cosx+cB2e1dx?C42.)dx等于(?21-x?0??DA0B1C2在43处极限存在,则下列结论中正确的是.若函数B).(在B)在处连续A(()处可能没有定义在)((CD)在处可导处不连续44.下列等式成立的是(A).)B)((A)DC)((45.下...