基于能量调整的射线图像增强算法

第1页共13页基于能量调整的射线图像增强算法摘要:提出了基于能量调整的射线图像增强算法,该算法是基于成像前后图像能量基本保持不变的前提,在频域上对图像进行高低频能量的相互转换,以达到增强射线图像全局对比度和细节信息的目的。实验部分兼顾定性和定量方法,分析了算法的效果,并与几种常用的图像增强算法进行了比较,结果显示该算法效果较好,能有效解决图像对比度偏低的问题。关键字:能量调整;调制传递函数;低频削弱;高频增强;Gamma校正:TN911.73?34文献标识码:A:1004?373X(2015)13?0042?04Abstract:Inthispaper,theradiographicimageenhancementalgorithmbasedonenergyadjustmentis第2页共13页proposed,whichmakesimageenergyremainthesamebeforeandafterimaging,andexecutesinterconversionbetweenhighandlowfrequencyenergyforimageinfrequency?domaintoenhancetheoverallcontrastanddetailinformationofradiographicimage.Theeffectofthealgorithmwasanalyzedbytheexperimentwhichgivestheconsiderationtobothqualitativeandquantitativemethods.Experimentresultsshowthattheproposedalgorithmhasbettereffectthanothercommonimageenhancementalgorithmsandcaneffectivelysolvetheproblemoflowimagecontrast.Keywords:energyadjustment;modulationtransferfunction;lowfrequencyweakening;highfrequencyenhancement;Gammacorrection0引言由于受到成像系统中光学镜头、影像增强器等的影响,射线图第3页共13页像对比度一般比较差,图像细节信息易丢失。因此,在应用中通常需要增强图像对比度和细节信息,扩大图像的灰度范围,突出图像中的感兴趣区域。常用的图像增强方法有:空域处理法和频域处理法。空域方法主要包括灰度变换法、直方图法[1]、空间滤波法[2]等;频域的方法主要有同态滤波法[3]、反锐化掩模法[4]等。这些图像增强算法的通用性较强,但是在处理射线图像时效果并不理想。文献[5]提出了基于灰度对比和自适应小波变换的X射线图像增强算法,但难以在细节增强和噪声抑制之间取得良好折衷;文献[6]提出了将全局自适应均衡与局部动态增强相结合的射线图像增强算法,但其在细节增强方面的效果不明显;文献[7]提出基于多尺度对比度塔的图像增强算法,其运算量大,实时性较差且容易过度增强。本文根据图像退化前后的能量特性,提出了基于能量调整的图像增强方法。该方法在频域上对射线图像进行高低频能量调整,再利用Gamma校正[8]保证图像的总能量基本保持不变。实验证明该方法可以有效地提高第4页共13页图像对比度,增强图像细节。1能量特性成像系统的成像特性和像质评价,可以使用物体本身,即真实的“像”和物体通过成像系统成像后的频率之比来表示。这种频率对比特性,就是所谓的调制传递函数(ModulationTransferFunction,MTF)。每一个光学成像系统的MTF值的高低在一定程度上决定了成像后图像对比度的高低,且会随着不同的成像系统和不同的空间频率而改变,一般有[0≤MTF≤1。]光学系统的调制传递函数对真实图像所产生的影响,类似于将其与一个复杂的传递函数卷积。由于在射线成像系统中,难以得到较理想的没有衰减的图像,本文使用退化前后的卫星图像来说明成像系统的能量特性。图1为卫星图像的原图和经MTF退化后的图像以及它们各自的频谱图。在本文中,使用图像的灰度均值来近似地表示图像的能量。计算结果显示图1中原图与退化后图像的能量基本相等。退化图像第5页共13页的边缘细节信息模糊不清,灰度变化平滑过渡,另外,从退化前后的频谱图像中可以看出,高频部分减少了而低频部分增加了。因此在总能量不变的情况下,经光学成像系统后,有一部分高频能量转换为低频能量,光学成像系统的调制传递函数在图像的频域上就表现为高低频能量的相互转换。2算法描述基于能量调整的射线图像增强算法包括三个主要部分,即低频削弱、高频增强和Gamma校正。2.1低频削弱处理射线图像包含大量的低频信息,所以在傅里叶变换域中,低频信号的幅值较大,低频削弱就是降低低频幅值最大点。设采集到的射线图像为[f(i,j),]频域图像为[F(x,y),]...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

文秘专家
机构认证
内容提供者

1

确认删除?