第五概率统计习题全解同济大学高等教育出社重点题型

习题一5.一批产品中有合格品和废品,从中有放回地抽取三次,每次取一件,设表示事件“第次抽到废品”,,试用表示下列事件:(1)第一次、第二次中至少有一次抽到废品;(2)只有第一次抽到废品;(3)三次都抽到废品;(4)至少有一次抽到合格品;(2)只有两次抽到废品。解(1);(2);(3);(4);(5).6.接连进行三次射击,设={第次射击命中},,{三次射击恰好命中二次},{三次射击至少命中二次};试用表示和。解习题二10.已知,,,求(1),;(2);(3);(4);(5).解(1),;(2);(3);(4),;(5)习题三6.已知甲袋中有6只红球,4只白球;乙袋中有8只红球,6只白球。求下列事件的概率:(1)随机取一只袋,再从该袋中随机取一球,该球是红球;(2)合并两只袋,从中随机取一球,该球是红球。解(1)记{该球是红球},{取自甲袋},{取自乙袋},已知,,所以(2)7.某工厂有甲、乙、丙三个车间,生产同一产品,每个车间的产量分别占全厂的25%,35%,40%,各车间产品的次品率分别为5%,4%,2%,求该厂产品的次品率。解12.甲、乙、丙三人同时独立地向同一目标各射击一次,命中率分别为1/3,1/2,2/3,求目标被命中的概率。解记{命中目标},{甲命中},{乙命中},{丙命中},则,因而习题四12.甲、乙、丙三人同时独立地向同一目标各射击一次,命中率分别为1/3,1/2,2/3,求目标被命中的概率。解记{命中目标},{甲命中},{乙命中},{丙命中},则,因而7.设随机变量,已知,求与的值。解由于,因此。由此可算得即解得;此时,。13.设随机变量X的密度函数为,求:(1)系数;(2);(3)X的分布函数。解(1)系数必须满足,由于为偶函数,所以解得;(2);(3)====习题五3.箱子中装有10件产品,其中2件为次品,每次从箱子中任取一件产品,共取2次,定义随机变量X、Y如下:X=0,若第一次取出正品;Y=0,若第二次取出正品;1,若第一次取出次品;1,若第二次取出次品。分别就下面两种情况求出二维随机变量的联合分布律:(1)放回抽样;(2)不放回抽样。解(1)在放回抽样时,X可能取的值为,Y可能取的值也为,且或写成X\Y0101(2)在无放回情形下,X、Y可能取的值也为0或1,但取相应值的概率与有放回情形下不一样,具体为或写成X\Y01015.对于第3题中的二维随机变量的分布律,分别在有放回和无放回两种情况下,写出关于X及关于Y的边缘分布律。解在有放回情况下X的边缘分布律为X01概率Y的边缘分布律为Y01概率在无放回情况下X的边缘分布律为X01概率Y的边缘分布律为Y01概率12.设二维随机变量的联合密度函数为求:(1)系数;(2);(3)证明X与Y相互独立。解(1)必须满足,即,经计算得;(2);(3)关于X的边缘密度函数=同理可求得Y的边缘密度函数为易见,因此X与Y相互独立。习题六3.设X的密度函数为求以下随机变量的密度函数:(1);(2);(3)。解求连续型随机变量的函数的密度函数可通过先求其分布函数,然后再求密度函数。如果为单调可导函数,则也可利用性质求得。(1)解法一:设,则Y的分布函数==解法二:,,而,则==(2)设,则,Y的密度函数=(3)设,由于X只取中的值,所以也为单调函数,其反函数,因此Y的密度函数为=5.设随机变量X服从正态分布,试求随机变量的函数的密度函数。解,所以,此时不为单调函数不能直接利用性质求出。须先求Y的分布函数。.=习题七9.设随机变量的联合分布律为X\Y0100.30.210.40.1求、、、、、、、。解关于X与Y的边缘分布律分别为:X01Y01Pr0.50.5Pr0.70.314.设,求(1);(2)。解:(1)(2)习题九7.设是取自总体的一个样本,在下列三种情况下,分别求:(1);(2);(3),其中。解(1)(2)习题十5.设是取自总体X的一个样本,X的密度函数为其中未知,求的矩估计和最大似然估计。解,令,故的矩估计量为,另,似然函数对数似然函数为解得的最大似然估计量为。8.设总体X的密度函数为,其中未知,设是取自这个总体的一个样本,试求的最大似然估计。解似然函数,对数似然函数为得的最大似然估计量为。习题十二5.某纤维的强力服从正态分布N(μ,1.192),原设计的平均强力为6g,现改进工艺后,某天测得100个强力数据,其样本平均值为6.35g,总体标准差假定不变,...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?