bp神经网络预测代码

x=[5416755196563005748258796602666146562828646536599467207662076585967295691727049972538745427636878534806718299285229871778921190859924209371794974962599754298705100072101654103008104357105851107507109300111026112704114333115823117171118517119850121121122389123626124761125786126743127627128453129227129988130756131448132129132802134480135030135770136460137510]';%该脚本用来做NAR神经网络预测%作者:Macer程lag=3;%自回归阶数iinput=x;%x为原始序列(行向量)n=length(iinput);%准备输入和输出数据inputs=zeros(lag,n-lag);fori=1:n-laginputs(:,i)=iinput(i:i+lag-1)';endtargets=x(lag+1:end);%创建网络hiddenLayerSize=10;%隐藏层神经元个数net=fitnet(hiddenLayerSize);%避免过拟合,划分训练,测试和验证数据的比例net.divideParam.trainRatio=70/100;net.divideParam.valRatio=15/100;net.divideParam.testRatio=15/100;%训练网络[net,tr]=train(net,inputs,targets);%%根据图表判断拟合好坏yn=net(inputs);errors=targets-yn;figure,ploterrcorr(errors)%绘制误差的自相关情况(20lags)figure,parcorr(errors)%绘制偏相关情况%[h,pValue,stat,cValue]=lbqtest(errors)%Ljung-BoxQ检验(20lags)figure,plotresponse(con2seq(targets),con2seq(yn))%看预测的趋势与原趋势%figure,ploterrhist(errors)%误差直方图%figure,plotperform(tr)%误差下降线%%下面预测往后预测几个时间段fn=7;%预测步数为fn。f_in=iinput(n-lag+1:end)';f_out=zeros(1,fn);%预测输出%多步预测时,用下面的循环将网络输出重新输入fori=1:fnf_out(i)=net(f_in);f_in=[f_in(2:end);f_out(i)];end%画出预测图figure,plot(1949:2013,iinput,'b',2013:2020,[iinput(end),f_out],'r')

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

确认删除?