高考数学二轮优化提升专题训练考点36、导数中的证明与探索性问题(原卷)

2020年高考数学二轮优化提升专题训练考点36导数中的证明与探索性问题【自主热身,归纳总结】1、(2017江苏)已知函数有极值,且导函数的极值点是的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:;2、(2017镇江期末)已知函数f(x)=,g(x)=λ(x2-1)(λ为常数).(1)若函数y=f(x)与函数y=g(x)在x=1处有相同的切线,求实数λ的值;(2)若λ=,且x≥1,证明:f(x)≤g(x);3、(2017南京、盐城二模)已知函数f(x)=ex-ax-1,其中e为自然对数的底数,a∈R.(1)若a=e,函数g(x)=(2-e)x.①求函数h(x)=f(x)-g(x)的单调区间;②若函数F(x)=的值域为R,求实数m的取值范围.(2)若存在实数x1,x2∈[0,2],使得f(x1)=f(x2),且|x1-x2|≥1,求证:e-1≤a≤e2-e.4、(2017扬州期末)已知函数f(x)=g(x)·h(x),其中函数g(x)=ex,h(x)=x2+ax+a.(1)求函数g(x)在(1,g(1))处的切线方程;(2)当0<a<2时,求函数f(x)在x∈[-2a,a]上的最大值;(3)当a=0时,对于给定的正整数k,问函数F(x)=e·f(x)-2k(+1)是否有零点?请说明理由.(参考数据e≈2.718,≈1.649,e≈4.482,ln2≈0.693)【问题探究,变式训练】题型一、与零点、极值点有关的证明利用导数证明不等式的常规解题策略:(1)构造差函数h(x)=f(x)-g(x),根据差函数的导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式;(2)根据条件,寻找目标函数.一般思路为充分利用条件将求和问题转化为对应项之间的大小关系,或利用放缩、等量代换等手段将多元函数转化为一元函数.例1、(2019无锡期末)已知函数f(x)=ex-x2-ax(a>0).(1)当a=1时,求证:对于任意x>0,都有f(x)>0成立;(2)若函数y=f(x)恰好在x=x1和x=x2两处取得极值,求证:<【变式1】、(2019南通、泰州、扬州一调)已知函数f(x)=+(a∈R).(1)讨论f(x)的单调性;(2)设f(x)的导函数为f′(x),若f(x)有两个不相同的零点x1,x2.①求实数a的取值范围;②证明:x1f′(x1)+x2f′(x2)>2lna+2.【变式2】(2018常州期末)已知函数f(x)=,其中a为常数.(1)若a=0,求函数f(x)的极值;(2)若函数f(x)在(0,-a)上单调递增,求实数a的取值范围;(3)若a=-1,设函数f(x)在(0,1)上的极值点为x0,求证:f(x0)<-2..【变式3】(2017南京学情调研)已知函数f(x)=ax2-bx+,a,b∈R.(1)当a=b=1时,求曲线y=f(x)在x=1处的切线方程;(2)当b=2a+1时,讨论函数f(x)的单调性;(3)当a=1,b>3时,记函数f(x)的导函数f′(x)的两个零点是x1和x2(x1<x2),求证:f(x1)-f(x2)>-ln2.【变式4】(2018南京、盐城一模)设函数f(x)=,g(x)=ax+-c(a,b,c∈R).(1)当c=0时,若函数f(x)与g(x)的图像在x=1处有相同的切线,求a,b的值;(2)当b=3-a时,若对任意x0∈(1,+∞)和任意a∈(0,3),总存在不相等的正实数x1,x2,使得g(x1)=g(x2)=f(x0),求c的最小值;(3)当a=1时,设函数y=f(x)与y=g(x)的图像交于A(x1,y1),B(x2,y2)(x1<x2)两点.求证:x1x2-x2<b<x1x2-x1.题型二探索性问题探索性问题论证可以运用反证法,假设存在,解题的难点在于导出矛盾,根据已知条件,得到方程解的问题,通过构造函数,研究函数的单调性,得到方程不成立,从而与假设矛盾,证得结论.例2、(2019南京、盐城一模)若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.设函数f(x)=x3-tx2+1(t∈R).(1)若函数f(x)在(0,1)上无极值点,求t的取值范围;(2)求证:对任意实数t,函数f(x)的图像总存在两条切线相互平行;(3)当t=3时,函数f(x)的图像存在的两条平行切线之间的距离为4,求满足此条件的平行线共有几组.【变式1】(2019苏州三市、苏北四市二调)已知函数f(x)=2lnx+x2-ax,a∈R.(1)当a=3时,求函数f(x)的极值;(2)设函数f(x)在x=x0处的切线方程为y=g(x),若函数y=f(x)-g(x)是(0,+∞)上的单调增函数,求x0的值;(3)是否存在一条直线与函数y=f(x)的图像相切于两个不同的点?并说明理由.【变式2】(2018苏州暑假测试)已知函数f(x)=(ax2+x)ex,其中e是自然对数的底...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?