中值定理在不等式证明中的应用本科毕业论文

编号:201231130120本科毕业论文题目:中值定理在不等式证明中的应用系院:数学科学系姓名:王长普学号:0831130120专业:小学教育(数学方向)年级:2008级指导教师:钟铭职称:副教授完成日期:2012年5月---本文来源于网络,仅供参考,勿照抄,如有侵权请联系删除---摘要本文主要写在不等式证明过程中常用到的几种中值定理,其中在拉格朗日中值定理证明不等式的应用中讲了三种方法:直接公式法、变量取值法、辅助函数构造法.在泰勒中值定理证明不等式的应用中,给出了泰勒公式中展开点选取的几种情况:区间的中点、已知区间的两端点、函数的极值点或最值点、已知区间的任意点.同时对各种情况的运用范围和特点作了说明,以便更好的运用泰勒中值定理证明不等式.并对柯西中值定理和积分中值定理在证明不等式过程中的应用问题作简单介绍.关键词:拉格朗日中值定理;泰勒公式;柯西中值定理;积分中值定理;不等式AbstractThispaperideawroteininequalityproofofusefrequentlyduringseveralofthemeanvaluetheorem,whichintheLagrangemeanvaluetheoremprovinginequalityintheapplicationofthethreemethodstospeak:directformulamethod,variablevaluemethod,themethodtoconstructauxiliaryfunction.intheapplicationofproofinequalitiesoftheTaylormeanvaluetheorem,whichgaveTaylorformulaonthepointinseveralways:thepointoftheinterval,theintervaloftwoknownextreme,thefunctionextremevaluepointorthemostvaluepoint,theintervalofknownatanypoint.Andtheapplicationrangeofofallkindsofsituationandcharacteristicsthatwereexplained,inordertobetteruseTaylorofthemeanvaluetheoremtotestifyinequality.AndCauchymid-valuetheoremandintegralmeanvaluetheoremintheapplicationprocesstoprovetheinequalitywerebrieflydiscussed---本文来源于网络,仅供参考,勿照抄,如有侵权请联系删除---Keywords:TheLagrangeMeanValueTheorem;Taylor'sFormula;CauchyMeanValueTheorem;Inequality;TheMeanValueTheoremforIntegrals---本文来源于网络,仅供参考,勿照抄,如有侵权请联系删除---目录摘要……………………………………………………………………………(I)Abstract…………………………………………………………………………(I)1引言……………………………………………………………………………(1)2拉格朗日中值定理在不等式证明中的应用…………………………………(2)2.1拉格朗日中值定理…………………………………………………………(2)2.2利用拉格朗日中值定理证明不等式………………………………………(2)2.2.1直接公式法……………………………………………………………(2)2.2.2变量取值法……………………………………………………………(4)2.2.3辅助函数构造法………………………………………………………(5)3泰勒中值定理在不等式证明中的应用………………………………………(7)3.1泰勒中值定理………………………………………………………………(7)3.2利用泰勒公式证明不等式…………………………………………………(7)3.2.1中点取值法……………………………………………………………(7)3.2.2端点取值法……………………………………………………………(9)3.2.3极值取值法……………………………………………………………(9)3.2.4任意点取值法…………………………………………………………(11)4柯西中值定理在不等式证明中的应用………………………………………(14)4.1柯西中值定理………………………………………………………………(14)4.2利用柯西中值定理证明不等式……………………………………………(14)5积分中值定理在不等式证明中的应用………………………………………(16)5.1积分中值定理………………………………………………………………(16)5.2利用积分证明不等式………………………………………………………(16)结束语……………………………………………...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

确认删除?