2015-2016学年第一学期《离散数学》(集合论部分)自测试题题号一二三四五总分统分人统分复核人得分得分阅卷人复核人一、单项选择题(本大题共8小题,每小题2分,共16分)在每小题列出的四个备选项中只有一个是最符合题目要求的,请将其代码填写在题后的括号内。错选、多选或漏选均不得分。1)等价关系一定不是【】A.对称的B.自反的C.可传递的D.反自反的2)设,则下列描述中正确的是【】A.B.C.D.3)设A、B是两个任意集合,则【】A.B.C.D.4)设,则其幂集的元素总个数为【】A.4B.8C.16D.325)设R是实数集合,,,则【】A.是关系,但不是函数B.仅是满射函数C.仅是单射函数D.是双射函数6)设是上的二元关系,、、分别指关系的自反闭包、对称闭包、传递闭包、则下列描述不正确的是【】A.B.C.D.7)如果R1和R2是集合A上的自反关系,则R1∪R2,R1∩R2,R1―R2中自反关系有【】个A.0B.1C.2D.38)设集合A={a,b,c},B={1,2,3,4},作f:A→B,则不同的函数个数为【】个A.12B.81C.64D.以上均不正确得分阅卷人复核人二、填空题(本大题共12空,每空2分,共24分)请在每小题的空格中填上正确答案。错填、漏填均不得分。7)设集合A={1,2,3,4},则A中的划分有_____________个.8)设,那么fld=_____________.9)设集合A={1,2,3,4},则_____________.10)设关系F={<3,3>,<6,2>},G={<2,3>},则=_____________.11)设集合A={0,1,2,3},B={2,3,4,5},R是A到B上的二元关系,其中R={<x,y>|x∈A,y∈B且x,y∈A∩B}则R的有序对集合为_____________.12)设集合A={a,b,c,d},A上的二元关系R={<a,a>,<b,b>,<b,c>,<c,d>},若在R中再增加两个元素_____________,则新得到的关系就具有对称性.13)设A={1,2}上的二元关系为R={<x,y>|x∈A∧y∈A∧x+y=10},则R的自反闭包为_____________.14)设R、S是定义在集合P上的二元关系,其中P是所有人的集合.R={<x,y>|x,y∈P且x是y的父亲};S={<x,y>|x,y∈P且x是y的母亲};(1)RºR表示的关系是:_____________.(2)S-1ºR表示的关系是:_____________.(3)SºR-1表示的关系是:_____________.(4)关系{<x,y>|x,y∈P且y是x的的外祖母},其关系表达式为_____________.(5)关系{<x,y>|x,y∈P且x是y的的祖母},其关系表达式为_____________.得分阅卷人复核人班级姓名学号----------------------------------------第-------------------1---------------------装--------------------------------线-------------------------------------------------------------------------------第-------------------2---------------------装--------------------------------线---------------------------------------三、计算题(本大题共3小题,共30分)15)(8分)某班级有25名学生,已知期中考试与期末考试得优的人数相等并且仅在一次考试中得优的人数是4人,在两次考试中均没有得到优的人数是15人.试求期中考试、期末考试和两次考试中得优人数各是多少?(要求:应用包含排斥原理求解)16)(13分)设集合A={2,3,6,8},在集合A上定义整除关系R≤,偏序集<A,R≤>对应的哈斯图如右图所示,请求解下列问题.(1)画出关系R的关系图.(2)求关系R的传递闭包t(R)(要求:应用沃舍尔算法求解).(3)求集合A的最大元、极小元、上界、下确界.17)(9分)设A,B为非空集合,|A|=n,|B|=m,请计算:(1)能够构造从集合A到B,具有单射性质的函数共有多少种?并讨论此时n与m的关系.(2)能够构造从集合A到B,具有满射性质的函数共有多少种?并讨论此时n与m的关系.(3)能够构造从集合A到B,具有双射性质的函数共有多少种?并讨论此时n与m的关系.得分阅卷人复核人四、证明题(本大题共2小题,每小题6分,共12分)18)设A,B为任意集合,P(A)、P(B)分别表示集合A、B的幂集.证明:P(A)∩P(B)=P(A∩B).19)设R是集合A上的自反和传递关系,如下定义A上的关系T,使得对于任意的x,y∈A,均有<x,y>∈T<x,y>∈R∧<y,x>∈R成立.证明:T是集合A上的等价关系.得分阅卷人复核人五、综合应用题(本大题共2小题,每小题9分,共18分)20)设全集为n元集,按照某种给定顺序排列为E={x1,x2,…,xn}.在...