几类高阶差分系统周期解的存在性

应用数学专业毕业论文[精品论文]几类高阶差分系统周期解的存在性关键词:高阶差分系统周期解Morse理论环绕定理山路引理摘要:微分方程、差分方程作为现代数学的一个重要分支,广泛应用于计算机科学、经济学、神经网络、生态学及控制论等学科领域中,因此对微分方程、差分方程解的性态的研究不仅有着重要的理论意义,而且具有重要的实用价值.几十年来,许多学者对微分方程周期解的存在性与多重性应用不同的方法进行了深入广泛的研究,这些方法主要有临界点理论(包括极小极大理论、几何指标理论与Morse理论)、不动点理论、重合度理论、Kaplan-Yorke藕合系统法等.在这些方法中,临界点理论已成为处理这类问题的强有力的工具.但是应用临界点理论研究差分方程周期解的存在性的文献很少,其主要原因在于难以找到适当的变分结构.本博士论文应用临界点理论研究了几类高阶差分系统的周期解的存在性和一类椭圆系统的解的存在性,得到了一系列全新的结果,主要内容如下:首先,简要介绍了变分法的历史,回顾了与所研究问题相关的椭圆方程、哈密尔顿系统的历史背景与发展现状,并对本文的工作进行了简要的陈述.其次,构建了几类新的高阶差分系统(或方程)模型,并通过构建恰当的变分结构,将两类高阶差分系统(或方程)的周期解和一类椭圆系统的解的存在性问题转化为适当函数空间上对应泛函的临界点的存在性问题,拓展了原有的二阶差分方程(或系统)模型在第二章中,我们讨论了一类高阶差分系统.首先,利用Morse理论结合临界群的计算等方法研究了高阶差分系统在非线性项是渐近线性的和超线性的两种情形,得出以下结论:当非线性项在无穷远处是渐近线性时,如果变分泛函在无穷远处的Morse指标和原点处的Morse指标不同,则系统在共振和非共振两种状态下都存在非平凡周期解.当非线性项在无穷远处是超线性时,系统至少存在三个不同的周期解.然后,分别利用环绕定理、对称山路引理得到了该高阶差分系统存在多个和无穷多个非平凡周期解的结论,部分结果推广了已有文献的结论.再利用Morse理论结合Lyapunov-schmidt约化方法、三临界点定理研究该高阶差分系统,将原有的对微分方程的研究方法推广到差分方程,并获得了该高阶差分系统多个和无穷多个非平凡周期解的存在条件.在第三章中,我们利用环绕定理研究一类高阶泛函差分方程的周期解的存在性,得到了该方程至少存在一个非平凡周期解的若干充分条件.在第四章中,我们考虑一类高阶差分方程.在非线性项是共振的情形,我们利用临界点理论中的局部环绕及无穷远处的角条件获得了该高阶差分方程多个非平凡周期解的存在条件.在第五章中,我们结合畴数理论,利用推广的山路引理研究了一种椭圆系统的解的存在性,所得结果推广了某些文献的结论.正文内容微分方程、差分方程作为现代数学的一个重要分支,广泛应用于计算机科学经济学、神经网络、生态学及控制论等学科领域中,因此对微分方程、差分方程解的性态的研究不仅有着重要的理论意义,而且具有重要的实用价值.几十年来,许多学者对微分方程周期解的存在性与多重性应用不同的方法进行了深入广泛的研究,这些方法主要有临界点理论(包括极小极大理论、几何指标理论与Morse理论)、不动点理论、重合度理论、Kaplan-Yorke藕合系统法等.在这些方法中,临界点理论已成为处理这类问题的强有力的工具.但是应用临界点理论研究差分方程周期解的存在性的文献很少,其主要原因在于难以找到适当的变分结构.本博士论文应用临界点理论研究了几类高阶差分系统的周期解的存在性和一类椭圆系统的解的存在性,得到了一系列全新的结果,主要内容如下:首先,简要介绍了变分法的历史,回顾了与所研究问题相关的椭圆方程、哈密尔顿系统的历史背景与发展现状,并对本文的工作进行了简要的陈述.其次,构建了几类新的高阶差分系统(或方程)模型,并通过构建恰当的变分结构,将两类高阶差分系统(或方程)的周期解和一类椭圆系统的解的存在性问题转化为适当函数空间上对应泛函的临界点的存在性问题,拓展了原有的二阶差分方程(或系统)模型.在第二章中,我们讨论了一类高阶差分系统.首先,利用Morse理论结合临界群的计算等方法研究了高阶差分系...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?