基于NSGA-II算法的多目标参数优化的主动队列管理新策略*陆锦军1,2李志权2王执铨1(1南京理工大学自动化学院南京;2南通职业大学现代教育技术中心南通)摘要本文推导了基于流体流理论的网络简化模型,基于该模型将NSGA-II与PGA相结合的优化算法应用于PID控制器参数优化,提出了一种多目标PID优化设计方法——在满足系统鲁棒性的前提下,以超调量、上升时间和调整时间最小作为多目标优化的子目标,并将NSGA-Ⅱ与PGA相结合对其求解。该算法求得的Pareto最优解分布均匀,收敛性和鲁棒性好,根据网络主动队列管理控制系统的要求在Pareto解集中选择最终的满意解。仿真结果表明,在大时滞和突发业务流的冲击两种情况下,该方法设计的控制器的动静态性能优于RED、GA、SPSO、QDPSO算法的优化结果。关键词主动队列管理网络拥塞PID控制NSGA-IITP273文献标志码A国家标准学科分类代码120.30ANewTacticsofMulti-ObjectParameterOptimizationforActiveQueueManagementBasedonNSGA-IIAlgorithmLU激n-jun1,2LIZhi-quan2WANGZhi-quan1(1SchoolofAutomation,Nan激ngUniversityofScienceandTechnology,Nan激ng,China;2CenterofEducationandTechnology,NantongVocationalCollege,Nantong,China)Abstract:Simplifiednetworkmodelbasedonfluidflowtheoryisderivedinthispaper,andbasedonthismodel,animprovedalgorithm,i.e.optimizationalgorithmcombiningNSGA-IIandPGAisappliedtooptimizationofPIDcontrollerparameters.Inthefollowing,amulti-objectPIDoptimizationdesignmethodisputforward,i.e.whenrobustnessofthesystemissatisfied,them*收稿日期:基金项目:国家自然科学基金(),江苏省“六大人才高峰”项目(07-E-013),南通市应用研究计划项目(K)---本文来源于网络,仅供参考,勿照抄,如有侵权请联系删除---inimumofovershoot,risetimeandadjustingtimeistakenasthesub-objectofmulti-objectoptimization,andsolveitbycombiningNSGA-IIandPGA.TheParetooptimalsolutiongotbythisalgorithmdistributeseven,andhasgoodconvergenceandrobustness.AccordingtorequestofnetworkedActiveQueueManagementcontrolsystem,asatisfyingsolutionischoseninParetosolutionset.Thesimulationexperimentalresultsshowthatunderthetwoconditionsoflargetimedelayandsuddenbusinessflow,thedynamicstateandsteadystateperformancesoftheproposedalgorithmareobviouslysuperiortothoseoftheexistingRED,GA,SPSOandQDPSOalgorithms.Keywords:activequeuemanagement;networkcongestion;PIDcontrol;NSGA-II1引言IP网络拥塞控制是人们一直着力解决但未能很好解决的问题,相继产生了不少有影响力的算法,如RED[1]、ARED[2]、SRED[3]、BLUE[4]等,同时也出现了许多基于网络流量的控制模型,但较具影响力的是VMisra等人于2000年基于流体流理论提出的网络模型[5],该模型较为恰当地描述了TCP传输流的行为[6],为研究人员广为采用,根据该模型,产生了PID[7]等主动队列管理算法和相应的PID参数优化算法[8-11],增强了对队列长度的控制能力,但这些方法难以兼顾系统对快速性、稳定性和鲁棒性的要求。针对这些缺陷,本文提出了一种多目标PID设计方法——在满足系统鲁棒性的前提下,以系统输出的超调量、上升时问和调整时间作为多目标优化的子目标,并将带精英策略的快速非支配排序遗传算法(NSGA-II)[12]和并行遗传算法(PGA)[13]相结合,提出基于伪并行NSGA-II算法的多目标鲁棒PID优化设计方法,并且将得到的优化PID目标参数应用于网络主动队列管理系统中。仿真结果表明,在大时滞和突发业务流的冲击两种情况下,该方法设计的控制器的动静态性能优于RED、GA、SPSO、QDPSO算法的优化结果。2TCP/AQM简化模型及其AQM控制VMisra等人在分析网络连续数据流和随机微分方程的基础上,建立了TCP的动态模型[6],用如下一组非线性微分方程来描述。(1)式中:W为预期的TCP拥塞窗口的大小(包);q为预期的队列长度(包);为往返时间;(秒),为传输延时(秒);C为链路容量(包/秒);N为激活TCP连接数;P为分组...