冲刺高考数学二轮复习核心考点特色突破专题04导数的概念与应用含解析

专题04导数的概念与应用【自主热身,归纳提炼】1、曲线y=x-cosx在点处的切线方程为________.【答案】2x-y-=0【解析】:因为y′=1+sinx,所以k切=2,所以所求切线方程为y-=2,即2x-y-=0.2、在平面直角坐标系xOy中,若曲线y=lnx在x=e(e为自然对数的底数)处的切线与直线ax-y+3=0垂直,则实数a的值为________.【答案】-e【解析】:因为y′=,所以曲线y=lnx在x=e处的切线的斜率k=y′x=e=.又该切线与直线ax-y+3=0垂直,所以a·=-1,所以a=-e.3、若曲线C1:y=ax3-6x2+12x与曲线C2:y=ex在x=1处的两条切线互相垂直,则实数a的值为________.【答案】-【解析】:因为y′=3ax2-12x+12,y′=ex,所以两条曲线在x=1处的切线斜率分别为k1=3a,k2=e,即k1·k2=-1,即3ae=-1,所以a=-.4、在平面直角坐标系xOy中,记曲线y=2x-(x∈R,m≠-2)在x=1处的切线为直线l.若直线l在两坐标轴上的截距之和为12,则实数m的值为________.【答案】-3或-4【解析】:y′=2+,y′x=1=2+m,所以直线l的方程为y-(2-m)=(2+m)(x-1),即y=(2+m)x-2m.令x=0,得y=-2m;令y=0,x=.由题意得-2m=12,解得m=-3或m=-4.5、设f(x)=4x3+mx2+(m-3)x+n(m,n∈R)是R上的单调增函数,则实数m的值为________.【答案】6【解析】:因为f′(x)=12x2+2mx+(m-3),又函数f(x)是R上的单调增函数,所以12x2+2mx+(m-3)≥0在R上恒成立,所以(2m)2-4×12(m-3)≤0,整理得m2-12m+36≤0,即(m-6)2≤0.又因为(m-6)2≥0,所以(m-6)2=0,所以m=6.6、已知函数若函数f(x)的图象与x轴有且只有两个不同的交点,则实数m的取值范围为.【答案】(5,0)【解析】由,所以,,所以,()fx在01,上单调递增,即至多有一个交点,要使函数f(x)的图象与x轴有且只有两个不同的交点,即500mm,从而可得m(-5,0).7、已知点A(1,1)和B(-1,-3)在曲线C:y=ax3+bx2+d(a,b,d均为常数)上.若曲线C在点A,B处的切线互相平行,则a3+b2+d=________.【答案】:7【解析】由题意得y′=3ax2+2bx,因为k1=k2,所以3a+2b=3a-2b,即b=0.又a+d=1,d-a=-3,所以d=-1,a=2,即a3+b2+d=7.8、已知函数f(x)=lnx-(m∈R)在区间[1,e]上取得最小值4,则m=________.【答案】:-3e9、曲线f(x)=·ex-f(0)x+x2在点(1,f(1))处的切线方程为________________.【答案】:y=ex-【解析】:因为f′(x)=·ex-f(0)+x,故有即原函数表达式可化为f(x)=ex-x+x2,从而f(1)=e-,所以所求切线方程为y-=e(x-1),即y=ex-.应注意“在某点处的切线”与“过某点处的切线”的区别,前者表示此点即为切点,后者表示此点不一定是切点,过此点可能存在两条或多条切线.10、已知函数在3x时取得极值,则a的值等于.【答案】:3【解析】,根据题意'(3)0f,解得3a,经检验满足题意,所以a的值等于3.11.已知三次函数在(,)x是增函数,则m的取值范围是.【答案】:24≤m≤【解析】,由题意得恒成立,∴,∴24≤m≤.12、若函数在开区间2(6)aa,既有最大值又有最小值,则实数a的取值范围是.【答案】:{2}.【解析】:函数()gx在1x处取得极小值(1)2g,在x1处取得极大值(1)2g,又因为函数在开区间2(6)aa,内既有最大值又有最小值,所以即a的取值范围是{2}.【问题探究,开拓思维】例1、若直线2yxb为曲线exyx的一条切线,则实数b的值是.【答案】:1【解析】:设切点的横坐标为0x,由曲线xyex,得1xye,所以依题意切线的斜率为,得00x,所以切点为(0,1),又因为切线2yxb过切点(0,1),故有120b,解得1b.(3)当a=1时,记h(x)=f(x)·g(x),是否存在整数λ,使得关于x的不等式2λ≥h(x)有解?若存在,请求出λ的最小值;若不存在,请说明理由.(参考数据:ln2≈0.6931,ln3≈1.0986)思路分析第(2)问,由于问题中含有参变量a,因此,函数的单调性及单调区间就随着a的变化而变化,因此,就需要对参数a进行讨论,要讨论时,注意讨论的标准的确定方式:一是导函数是何种函数;二是导...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?