辽宁省葫芦岛市第一高级中学高二数学文科下学期拓展训练2

葫芦岛第一高级中学课外拓展训练(二)高二文数下一、选择题(本大题共12小题,每小题5分,共60分,每题只有一个正确答案)1.将点的直角坐标(-2,23)化成极坐标得().A.(4,32)B.(-4,32)C.(-4,3)D.(4,3)2.极坐标方程cos=sin2(≥0)表示的曲线是().A.一个圆B.两条射线或一个圆C.两条直线D.一条射线或一个圆3.极坐标方程+cos12=化为普通方程是().A.y2=4(x-1)B.y2=4(1-x)C.y2=2(x-1)D.y2=2(1-x)4.点P在曲线cos+2sin=3上,其中0≤≤4π,>0,则点P的轨迹是().A.直线x+2y-3=0B.以(3,0)为端点的射线C.圆(x-2)2+y=1D.以(1,1),(3,0)为端点的线段5.设点P在曲线sin=2上,点Q在曲线=-2cos上,则|PQ|的最小值为().A.2B.1C.3D.06.在满足极坐标和直角坐标互的化条件下,极坐标方程222+4sincos312=经过直角坐标系下的伸缩变换y=yx=x3321后,得到的曲线是().A.直线B.椭圆C.双曲线D.圆7.在极坐标系中,直线4=2+πsin)(,被圆=3截得的弦长为().A.22B.2C.25D.328.=2(cos-sin)(>0)的圆心极坐标为().A.(-1,4π3)B.(1,47π)C.(2,4π)D.(1,4π5)9.极坐标方程为lg=1+lgcos,则曲线上的点(,)的轨迹是().A.以点(5,0)为圆心,5为半径的圆B.以点(5,0)为圆心,5为半径的圆,除去极点C.以点(5,0)为圆心,5为半径的上半圆D.以点(5,0)为圆心,5为半径的右半圆10.方程cos+sin11=-表示的曲线是().A.圆B.椭圆C.双曲线D.抛物线11.已知复数z=(其中i为虚数单位),则z•=()A.1B.C.D.二、填空题(本大题共4小题,每小题5分,共20分.)12.极坐标方程2cos-=0表示的图形是.13.过点(,)且与极轴平行的直线的极坐标方程是.14.曲线=8sin和=-8cos(>0)的交点的极坐标是.15.已知曲线C1,C2的极坐标方程分别为cos=3,=4cos(其中0≤<),则C1,C2交点的极坐标为.16.是圆=2Rcos上的动点,延长OP到Q,使|PQ|=2|OP|,则Q点的轨迹方程是.三、解答题(本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤.)17、已知曲线的参数方程是(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是.(1)写出的极坐标方程和的直角坐标方程;(2)已知点、的极坐标分别为和,直线与曲线相交于两点,射线与曲线相交于点,射线与曲线相交于点,求的值.18、已知直线:ttytx(.232,11为参数),曲线C1:cos,sin,xy(为参数).(I)设与1C相交于A,B两点,求||AB;(II)若把曲线1C上各点的横坐标压缩为原来的21倍,纵坐标压缩为原来的23倍,得到曲线2C,设点P是曲线2C上的一个动点,求它到直线的距离的最小值.19、已知在平面直角坐标系xOy中,直线的参数方程是(t是参数),以原点O为极点,Ox为极轴建立极坐标系,圆C的极坐标方程为。(1)求圆心C的直角坐标;(2)由直线上的点向圆C引切线,求切线长的最小值。20、己知曲线C1的参数方程为.在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为(I)把C1的参数方程化为极坐标方程;(Ⅱ)求C1与C2交点的极坐标21.已知函数f(x)=xa﹣﹣lnx(a∈R).(1)若f(x)≥0恒成立,求实数a的取值范围;(2)证明:若0<x1<x2,则x1lnx1x﹣1lnx2>x1x﹣2.22.已知椭圆C:+=1(a>b>0)的短轴的一个顶点与两个焦点构成正三角形,且该三角形的面积为.(1)求椭圆C的方程;(2)设F1,F2是椭圆C的左右焦点,若椭圆C的一个内接平行四边形的一组对边过点F1和F2,求这个平行四边形的面积最大值.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C:ρ=,θ∈[0,2π),直线l为参数,t∈R)(1)求曲线C和直线l的普通方程;(2)设直线l和曲线C交于A、B两点,求|AB|的值.一、选择题1.A解析:=4,tan=,=.故选A.2.D解析: c...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?