哈夫变换和Canny边缘检测算法及其实现代码

哈夫变换和Canny边缘检测算法摘要在图象边缘检测中往往要求所检测到的边缘具有封闭特性,本文详细地分析了目前常用的两种算法:哈夫变换和Canny边缘检测算法,最后,探讨边缘算子应满足的准则。关键词边缘检测;闭合性;哈夫变换;Canny算子1引言图象的边缘是指图象局部区域亮度变化显著的部分,该区域的灰度剖面一般可以看作是一个阶跃,既从一个灰度值在很小的缓冲区域内急剧变化到另一个灰度相差较大的灰度值。图象的边缘部分集中了图象的大部分信息,图象边缘的确定与提取对于整个图象场景的识别与理解是非常重要的,同时也是图象分割所依赖的重要特征,边缘检测主要是图象的灰度变化的度量、检测和定位,自从1959提出边缘检测以来,经过五十多年的发展,已有许多中不同的边缘检测方法。在我们常用的几种用于边缘检测的算子中Laplace算子常常会产生双边界;而其他一些算子如Sobel算子又往往会形成不闭合区域。本文主要讨论了在边缘检测中,获取封闭边界区域的算法。2图象边缘检测的基本步骤(1)滤波。边缘检测主要基于导数计算,但受噪声影响。但滤波器在降低噪声的同时也导致边缘强度的损失。(2)增强。增强算法将邻域中灰度有显著变化的点突出显示。一般通过计算梯度幅值完成。(3)检测。但在有些图象中梯度幅值较大的并不是边缘点。最简单的边缘检测是梯度幅值阈值判定。(4)定位。精确确定边缘的位置。图1边缘检测酸法的基本步骤3边界闭合的算法3.1哈夫变换[3]由于噪声的存在,用各种算子得到的边缘象素不连续,但是由于边缘象素之间有一定的连续性,我们就可以根据边缘象素在梯度幅度或梯度方向上的连续性把他们连接起来。具体说来,如果象素(s,t)在象素(x,y)的领域且它们的梯度幅度与梯度方向在给定的阈值下满足:T是幅度阈值;A是角度阈值;那么,如对所有的边缘象素都进行上述的判断和连接就可以得到一个闭合的边界。哈夫变换方法是利用图像得全局特性而对目标轮廓进行直接检测的方法,在已知区域形状的条件下,哈夫变换可以准确地捕获到目标的边界(连续的获不连续的),并最终以连续曲线的形式输出变换结果,该变换可以从强噪声环境中将已知形状的目标准确得分割提取出来。哈夫变换的核心思想是:点—线的对偶性(duality)。通过变换将图象从图像控件转换到参数空间,在图像空间中一条过点(x,y)的直线方程为y=px+q,通过代数变换可以转换为另一种形式p=-px+y,即参数空间中过点(p,q)的一条直线,如果在图像空间中保持直线的斜率和截距的不变,其在参数空间必定过点(p,q),这也就说明,在图像空间中共线的点对应参数空间共点的线.哈夫变换就是根据上述点—线的对偶性把在图象空间中存在的直线检测问题转换为参数空间中存在的点检测问题,后者的处理要比前者简单易行得多,只需简单地累加统计即可实现对边缘的检测.哈夫变换不仅能检测直线等一阶曲线的目标,对于园、椭圆等高阶的曲线都可以检测出来。如圆的方程为:其参数空间是一个3D空间A(a,b,r),原理与检测直线上的点相同,只是复杂性增加了。如果圆的半径r己知,则问题又回到了2D空间A(a,b)哈夫变换对已知目标的检测过程受随机噪声和曲线中断等不利因素的影响很小,而且分割出的目标是直接放到另一个“干净”的缓存中的,因此可以做到零噪声,是相当有优势的。常规的哈夫变换在理论上能对所有可以写出具体解析表达式的曲线进行目标检测,但是在实际处理时,经常待检测的目标不规则或是很难获取甚至根本没有解析式,此时就要采取广义上的哈夫变换来检测目标,3.2最优的阶梯型边缘检测算法(canny边缘检测)1.Canny边缘检测基本原理(1)图象边缘检测必须满足两个条件:一能有效地抑制噪声;二必须尽量精确确定边缘的位置。(2)根据对信噪比与定位乘积进行测度,得到最优化逼近算子。这就是Canny边缘检测算子。(3)类似与Marr(LoG)边缘检测方法,也属于先平滑后求导数的方法。2.Canny边缘检测算法:step1:用高斯滤波器平滑图象;step2:用一阶偏导的有限差分来计算梯度的幅值和方向;step3:对梯度幅值进行非极大值抑制;step4:用双阈值算法检测和连接边缘。step1:高斯平滑函数step3:非极大值抑制仅仅得到全局的梯度并不足以...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?