1.21解(t)x1012t1212()1tx1012t1213)(2tx012t12134)1(2tx231210t12121/2)(4tx08t121101246)]()([()tutxxt00t1312)]()()[(2323ttxt023t)(2123)(2110123432121211n[n]x4121.22解0123412121211n[4]nx567811012121211n][3nx23456781102121n3][nx1821011n]1[3nx212101231n2]2][[nxn012343211n[])1(][2121xnxnn4120123n)1][(2nx101234312121211n][][3nxnu4121.27解记忆时变可加齐次因果稳固A是是是是非是B非是是是是是C是是是是非非D是是是是是是E是否是非是是F是是是是非是G是否是是非非(a))(22)(()txxtyt①由于(2)(2)(0)xxy,在t0的输出与前后时刻的输入都有关,所以系统是记忆的;②已知)(22)(()111txxtyt,)(22)(()222txxtty;当)(()012txttx时,)(2)2(()01012ttxtxtty,而)(22)()(010101ttxtxttyt,所以:)(()012tytty;因而系统是时变的;③已知)(22)(()111txxtyt,)(22)(()222txxtty,)(22)(()333txxtyt,当()()()213txxtxt时,)](2)(2[2)](2)([()21213txtxtxxtyt所以()()()213tyytyt,因而系统是可加的;当()()12axtxt时,())(22)(()1112ayttaxaxtty,因而系统是齐次的;综合系统的可加性与齐次性,所以系统是线性的;④由于(2)(2)(0)xxy,在t0的输出与t2的输入也有关,所以系统是非因果的;⑤如tBx)(,即输入有界,就:Btxxttxxtyt2)(22)()(22)((),即输出有界;所以系统是稳固的;(b)[cos(3)].()()xttyt①可见,在t0t点的输出y(0t)仅与0tt点的输入有关非记忆;②已知()[cos(3)]()11xttyt,()[cos(3)]()22xttyt;当)(()012txtxt时,)([cos(3)]()012txttyt,而)(3)cos(3)(01001txttttyt,)(()012tytty,因而系统是时变的;③已知()][cos(3)()11xttyt,()[cos(3)]()22xttyt,()[cos(3)]()33xttyt,当()()()213xtxtxt时,()]()[cos(3)][()213xtxttyt,所以()()()213ytytyt,因而系统是可加的;当()()12axtxt时,()()][cos(3).()12ayttaxtyt,因而系统是齐次的;综合系统的可加性与齐次性,所以系统是线性的;④由于系统是非记忆的,所以系统是因果的;⑤如tBx)(,即输入有界,就:Bxttxttxtyt()cos(3).()cos(3).()(),即输出有界,所以系统是稳固的;(c)xdtyt2())(①t0t的输出y(0t)与)2,(0tt的输出有关,系统是记忆的;②当输入)(()01txtxt时,输出tdxtyt201)()(,令ts0,就s0t,那么)(()()()022100tytxxsdstytttt,因而系统是时变的;③已知xdtyt())(211,xdtyt())(222;令()()()213xtxtxt,就()()()]()[()212213ytytdxxtyt,因而系统是可加的;当()1()axtxt时,()()())(2211aytdaxdxtytt,因而系统是齐次的;综合系统的可加性与齐次性,所以系统是线性的;④xdy10()(5),即t5时的输出y(5)与t(,10)间的输入都有关系统是非因果的;⑤如tBx)(,即输入有界,就:tttdBdxdxty222()()(),所以系统是不稳固的;(d)02),()(0,0()txttxtty①(2)(0)(0)xxy,即y(0)与2,0tt的输入有关,系统是记忆系统;②令)(()01txtxt,就02),()(0,002),()(0,0)(00111ttxtttxttxttxtyt而0000000002),()(,002),()(0,0)(tttxtttxtttttxtttxtttty)(()01tytyt,系统是时变的;③令()1()axtxt,就()02),()(0,01()ayttaxttaxtyt,所以,系统是齐次的;已知02),()(0,0)(111txtt...