揭示函数的本质及其研究方法

揭示函数的本质及其研究方法——记一堂高三函数复习课常州市北郊高级中学马剑飞213000摘要:数学学习是一个由薄到厚,再由厚到薄的过程,高三的学生经历了由薄到厚的过程,所以高三更加要关注学生由厚到薄的过程,让学生真正明白数学知识的本质及方法,从而提高数学能力与素养.函数是一个重要的知识点,通过这一章让学生经历这个过程,理解函数的本质,明白数学的学习方法.关键词:函数,本质,方法,数形结合数学课程标准指出“高中教育属于基础教育。高中数学课程应具有基础性,它包括两方面的含义:第一,在义务教育阶段之后,为学生适应现代生活和未来发展提供更高水平的数学基础,使他们获得更高的数学素养;第二,为学生进一步学习提供必要的数学准备.”高三的数学复习是为了让学生在这两方面能够得到更进一步的提升,但是,往往我们给学生的是无数的题,无数的方法,学生学到最后变成了用记忆的方法来学习数学,这样既不利于学生的水平的提高,也影响学生对数学的兴趣及后续的数学学习,所以高三的复习课更应让学生感受数学的本质,体会数学的研究方法,真正感受数学是思维的体操,感受数学的美.函数一章是学生进入高中学的第一个难点知识,也是高考重要的一个知识考点,是贯穿整个数学学习过程的一块知识.对于本章内容,学生做了很多的题,但是总是一遇到问题就没有方法,遇难而退,其主要原因在于不能掌握函数的本质.笔者在一节课中用几道函数题让学生经历探究的过程,感受数学的研究方法,培养学生思维的灵活性、深刻性和发散性,促进数学素养的提高,揭示数学的本质,感受数学思维的快乐!一、揭示函数的本质函数的最大难点是变化,所以函数的本质是研究两个变量之间的相互关系,解决的方法就是找到两个变量之间的变化关系,从而转化为函数关系,这就是函数思想。体会这个本质后,就形成了函数思想,就能够用函数的方法研究问题.为了让学生体会函数的本质,本节课给出了2011年江苏高考卷12题及一个练习,让学生真正感受函数的本质,形成函数的思想.例1、在平面直角坐标系中,已知点P是函数的图象上的动点,该图象在P处的切线交y轴于点M,过点P作的垂线交y轴于点N,设线段MN的中点的纵坐标为t,则t的最大值是.生1:本题求的最值,必须找到与另一个变量的关系,从而求出最值.解题过程为:设则,过点P作的垂线,,,所以,t在上单调增,在单调减,.通过生1的分析与解答过程,明确了求最值就是找函数关系式,转化为函数的最值问题,通过本题学生感受到了函数的本质,但是由于本题比较明显,学生还没有真正从思想上领会,故给出一个练习,通过练习让学生再摸索、感悟.练习1、设函数,.若存在,使得成立,则的最小值是.生2:令,但是两个量都在变,不能建立函数关系.生3:只要转化为一个变量就行了,所以要找两变量之间的关系,消元后就可以建立函数关系.解题过程为:令,由题知:,,,,令,则,由知,在上单调递增,,即在上单调递增,则.生2已能够运用函数的思想去理解,但是面对三个变量不知怎么处理,所以还没有能够真正掌握.生3运用化归的数学思想方法,消元解决了该问题,建立了函数关系,理解函数的本质.二、体会研究函数的方法:数形结合两个量的变化关系反映在函数图像上就更加形象,这就是数形结合思想.单调性、奇偶性都是从图像上研究,从而得出代数关系,所以让函数清晰起来的方法就是用函数图像.在用函数图像研究函数的过程就是对数形结合思想的体会,提高了数学素养,为后续的数学学习打下扎实的思维基础.本节课给出了2011年的江苏高考卷19题,本题用代数方法与数形结合方法都可以解,但是代数方法要求明显高,而用数形结合的方法却是很容易研究,在比较中感受数形结合思想的美.例2、已知a,b是实数,函数和是的导函数,若在区间I上恒成立,则称和在区间I上单调性一致(1)设,若函数和在区间上单调性一致,求实数b的取值范围;(2)设且,若函数和在以a,b为端点的开区间上单调性一致,求|a-b|的最大值。(1)解略;(2)给出的参考答案技巧多,分类多,学生看完答案后,普遍不理解,即使理解也感觉没有任何的收获.在这个时候,笔者提出...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?