专题7极值点偏移问题原卷-学霸养成2022年高考数学必杀技系列之导数

专题7极值点偏移问题一、考情分析函数与导数一直是高考中的热点与难点,近几年高考试卷及各地模拟试卷中常出现与函数极值点偏易有关的函数与不等式问题,已知函数是连续函数,在区间内有且只有一个极值点,且,若极值点左右的“增减速度”相同,常常有极值点,我们称这种状态为极值点不偏移;若极值点左右的“增减速度”不同,函数的图象不具有对称性,常常有极值点的情况,我们称这种状态为“极值点偏移”.此类问题背景新颖,教材中又没有涉及,不少同学望而生畏,本专题给出此类问题的常用解法,共同学们参考.二、解题秘籍(一)通过对称化构造新函数破解极值点偏易问题【例1】已知函数.(1)求函数的单调区间和极值;(2)已知函数的图像与的图像关于直线对称,证明:当时,;(3)如果,且,证明:.【分析】(1)由可得在上递增,在上递减,有极大值,无极小值;(2),构造函数,,由单调性可得时;(3)假设,由(2)得,即,由在上递增,可得.该题的三问由易到难,层层递进,完整展现了处理极值点偏移问题的一般方法——对称化构造的全过程,直观展示如下:【例1】是这样一个极值点偏移问题:对于函数,已知,,证明.再次审视解题过程,发现以下三个关键点:①,的范围;②不等式;③将代入(2)中不等式,结合的单调性获证结论.小结:用对称化构造的方法求解极值点偏移问题大致分为以下三步:①求导,获得的单调性,极值情况,作出的图像,由得,的取值范围(数形结合);②构造辅助函数(对结论,构造;对结论,构造),求导,限定范围(或的范围),判定符号,获得不等式;③代入(或),利用及的单调性证明最终结论.下面给出第(3)问的不同解法【解析】法一:,易得在上单调递增,在上单调递减,时,,,时,,函数在处取得极大值,且,如图所示.由,不妨设,则必有,构造函数,则,所以在上单调递增,,也即对恒成立.由,则,所以,即,又因为,且在上单调递减,所以,即证法二:欲证,即证,由法一知,故,又因为在上单调递减,故只需证,又因为,故也即证,构造函数,则等价于证明对恒成立.由,则在上单调递增,所以,即已证明对恒成立,故原不等式亦成立.法三:由,得,化简得…,不妨设,由法一知,.令,则,代入式,得,反解出,则,故要证:,即证:,又因为,等价于证明:…,构造函数,则,故在上单调递增,,从而也在上单调递增,,即证式成立,也即原不等式成立.法四:由法三中式,两边同时取以为底的对数,得,也即,从而,令,则欲证:,等价于证明:…,构造,则,又令,则,由于对恒成立,故,在上单调递增,所以,从而,故在上单调递增,由洛比塔法则知:,即证,即证式成立,也即原不等式成立.(二)含参函数问题可考虑先消去参数含参数的极值点偏移问题,在原有的两个变元的基础上,又多了一个参数,故思路很自然的就会想到:想尽一切办法消去参数,从而转化成不含参数的问题去解决;或者以参数为媒介,构造出一个变元的新的函数.由于可导函数的极值点是的零点,也是方程的实根,所以有些与零点或方程实根有关的问题可以利用求解极值点偏移问题的方法去解决.【例2】已知函数,为常数,若函数有两个零点,试证明:【分析】法一:消参转化成无参数问题:,是方程的两根,也是方程的两根,则是,设,,则,从而,此问题等价转化成为【例1】,下略.法二:利用参数作为媒介,换元后构造新函数:不妨设, ,∴,∴,欲证明,即证. ,∴即证,∴原命题等价于证明,即证:,令,构造,利用单调性求解,下略.法三:直接换元构造新函数:设,则,反解出:,故,转化成法二,略.(三)对数平均不等式两个正数和的对数平均定义:对数平均与算术平均、几何平均的大小关系:(此式记为对数平均不等式)取等条件:当且仅当时,等号成立.【例3】设函数其图象与轴交于两点,且.(1)求实数的取值范围;(2)证明:为函数的导函数);【分析】(1),,当时,在R上恒成立,不合题意当时,当,即时,至多有一个零点,不合题意,故舍去;当,即时,由,且在内单调递减,故在有且只有一个零点;由令,则,故所以,即在有且只有一个零点.(2)由(1)知,在内递减,在内递增,且所以,因为,,即,所以所以,要证:,只须证,即故,,所以,所以因为,所以,而所以成立,所以【评注】根据对数平均不等式求解的步骤是:一、通过等式两边同取自然对数或相减等配凑出,二、通过等式两边同除以...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?