值域的求法典型习题及解析

值域的求法习题一.解答题(共10小题)1.已知函数的定义域为集合A,函数的值域为集合B,求A∩B和(CRA)∩(CRB).2.已知函数f(x)=x2﹣bx+3,且f(0)=f(4).(1)求函数y=f(x)的零点,写出满足条件f(x)<0的x的集合;(2)求函数y=f(x)在区间(0,3]上的值域.3.求函数的值域:.4.求下列函数的值域:(1)y=3x2﹣x+2;(2);(3);(4);(5)(6);5.求下列函数的值域(1);(2);(3)x∈[0,3]且x≠1;(4).6.求函数的值域:y=|x﹣1|+|x+4|.7.求下列函数的值域.(1)y=﹣x2+x+2;(2)y=3﹣2x,x∈[2﹣,9];(3)y=x22x3﹣﹣,x∈(﹣1,2];(4)y=.8.已知函数f(x)=22x+2x+1+3,求f(x)的值域.9.已知f(x)的值域为,求y=的值域.10.设的值域为[1﹣,4],求a、b的值.参考答案与试题解析一.解答题(共10小题)1.已知函数的定义域为集合A,函数的值域为集合B,求A∩B和(CRA)∩(CRB).考点:函数的值域;交、并、补集的混合运算;函数的定义域及其求法。1457182专题:计算题。分析:由可求A,由可求B可求解答:解:由题意可得∴A=[2,+∞), ∴B=(1,+∞),CRA=(﹣∞,2),CRB=(﹣∞,1]﹣﹣﹣(4分)∴A∩B=[2,+∞)∴(CRA)∩(CRB)=(﹣∞,1]﹣﹣﹣﹣﹣(6分)点评:本题主要考查了函数的定义域及指数函数的值域的求解,集合的交集、补集的基本运算,属于基础试题2.已知函数f(x)=x2﹣bx+3,且f(0)=f(4).(1)求函数y=f(x)的零点,写出满足条件f(x)<0的x的集合;(2)求函数y=f(x)在区间(0,3]上的值域.考点:函数的值域;二次函数的性质;一元二次不等式的解法。1457182专题:计算题。分析:(1)从f(0)=f(4)可得函数图象关于直线x=2对称,用公式可以求出b=4,代入函数表达式,解一元二次不等式即可求出满足条件f(x)<0的x的集合;(2)在(1)的基础上,利用函数的单调性可以得出函数在区间(0,3]上的最值,从而可得函数在(0,3]上的值域.解答:解:(1)因为f(0)=f(4),所以图象的对称轴为x==2,∴b=4﹣,函数表达式为f(x)=x2﹣4x+3,解f(x)=0,得x1=1,x2=3,因此函数的零点为:1和3满足条件f(x)<0的x的集合为(1,3)(2)f(x)=(x2﹣)21﹣,在区间(0,2)上为增函数,在区间(2,3)上为减函数所以函数在x=2时,有最小值为﹣1,最大值小于f(0)=3因而函数在区间(0,3]上的值域的为[1﹣,3).点评:本题主要考查二次函数解析式中系数与对称轴的关系、二次函数的单调性与值域问题,属于中档题.只要掌握了对称轴公式,利用函数的图象即可得出正确答案.3.求函数的值域:.考点:函数的值域。1457182专题:计算题;转化思想;判别式法。分析:由于对任意一个实数y,它在函数f(x)的值域内的充要条件是关于x的方程(y2﹣)x2+(y+1)x+y﹣2=0有实数解,因此“求f(x)的值域.”这一问题可转化为“已知关于x的方程(y2﹣)x2+(y+1)x+y﹣2=0有实数解,求y的取值范围”.解答:解:判别式法: x2+x+1>0恒成立,∴函数的定义域为R.由得:(y2﹣)x2+(y+1)x+y﹣2=0①①当y﹣2=0即y=2时,①即3x+0=0,∴x=0∈R②当y﹣2≠0即y≠2时, x∈R时方程(y2﹣)x2+(y+1)x+y﹣2=0恒有实根,∴△=(y+1)2﹣4×(y2﹣)2≥0,∴1≤y≤5且y≠2,∴原函数的值域为[1,5].点评:判别式法:把x作为未知量,y看作常量,将原式化成关于x的一元二次方程形式,令这个方程有实数解,然后对二次项系数是否为零加以讨论:(1)当二次项系数为0时,将对应的y值代入方程中进行检验以判断y的这个取值是否符合x有实数解的要求.(2)当二次项系数不为0时,利用“ x∈R,∴△≥0”求解,此时直接用判别式法是否有可能产生增根,关键在于对这个方程去分母这一步是不是同解变形.4.求下列函数的值域:(1)y=3x2﹣x+2;(2);(3);(4);(5)(6)考点:函数的值域。1457182专题:常规题型。分析:(1)(配方法) y=3x2﹣x+2=3(x﹣)2+(2)看作是复合函数先设μ=﹣x26x5﹣﹣(μ≥0),则原函数可化为y=,再配方法求得μ的范围,可得的范围.(3)可用分离变量法:将函数变形,...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?