大尺度ip流量矩阵估计关键技术研究

通信与信息系统专业毕业论文[精品论文]大尺度IP流量矩阵估计关键技术研究关键词:IP网络流量矩阵流量估计摘要:随着IP网络规模指数式增长而带来的对网络管理和维护的迫切需求,流量矩阵估计已成为当前的热点研究问题。IP网络的快速发展,迫使网络操作员需要知道网络中不同节点间数据包的转发情况,以便更好地进行负载均衡、流量检测路由最优化、网络维护、网络设计和网络规划等网络活动。流量矩阵作为网络活动的重要输入参数,已受到国内外研究人员的广泛关注,现已成为IP网络的重要研究内容。流量矩阵表示网络中源目的(Original-Destination,OD)节点之间流动的网络流量(即OD流大小),流量矩阵的维数等于网络中所有OD流的数目,它从全局的观点来描述整个网络的数据流动情况,是网络操作员决策的重要依据。然而,尽管流量矩阵很重要,但是要通过直接测量的方式来获得流量矩阵非常困难,有时甚至是不可能的。而流量矩阵估计采用间接测量的方式来获得流量矩阵可避免直接测量流量矩阵所遇到的困难。正是由于这一优点,本文研究大尺度IP骨干网络中的流量矩阵(即大尺度IP流量矩阵)估计问题,主要集中在以下几个方面:大尺度IP流量矩阵的最优化估计、基于Fratar模型的大尺度IP流量矩阵估计、基于回归模型的大尺度IP流量矩阵估计、基于递归神经网络的大尺度IP流量矩阵估计和基于前馈神经网络的大尺度IP流量矩阵估计等关键技术的研究。网络流量根据路由矩阵在网络上流动,并在网络各条链路上汇聚而形成链路负载,因此流量矩阵、路由矩阵和链路负载间具有确定的约束关系。然而,在IP网络中,特别是大尺度IP骨干网络中,OD流的数目远远大于IP网络中的链路数,这导致流量矩阵估计问题具有高度病态特性,如何克服这一问题的病态特性是当前流量矩阵估计面对的主要挑战。针对大尺度IP流量矩阵估计问题的高度病态特性,第二章基于数值最优化理论,探索寻找解决大尺度IP流量矩阵估计过程中解的不稳定性和不唯一性问题的思路,主要包括两方面的工作:(1)基于单纯形方法来估计流量矩阵。通过将流量矩阵估计问题描述为约束条件下的线性规划,然后结合分辨率矩阵和单纯形方法来解决该线性规划,从而获得满足要求的流量矩阵估计值。(2)基于模拟退火方法来求解流量矩阵估计问题。通过将流量矩阵估计问题描述为模拟退火过程,随着温度的不断降低,估计值逐步逼近真实值,从而克服该问题的病态特性,然后利用欧氏距离(Eucliddistance)和马氏距离(Mahalanobisdistance)作为最优化尺度来进一步克服该问题的病态特性,并通过迭代反演来获得时变网络条件下的流量矩阵最优化估计值。以前的文献大多基于统计模型来研究流量矩阵估计问题,但是当前的研究表明流量矩阵具有空间的和时间的相关性,统计模型很难捕获流量矩阵的这些特征。第三章基于Fratar模型来估计大尺度IP流量矩阵,主要包括两方面的工作:(1)利用Fratar模型来建模大尺度IP骨干网络中的OD流。通过Fratar模型,能准确捕获流量矩阵的空间时间相关性,从而能获得精确的流量矩阵初始值,然后通过迭代过程来获得流量矩阵的估计值。(2)由于(1)的迭代过程计算复杂,因而需要时间长。基于Fratar模型,本文利用代数重构技术(AlgebraicReconstructionTechnique,ART)来估计流量矩阵。ART是图像重构的重要技术,它基于投影和迭代来完成求解过程,需要的计算简单,计算时间短,因此ART能快速获得流量矩阵的估计结果。随着对网络流量的深入研究,研究人员发现网络流量不仅具有空间时间相关性,而且具有重尾分布(Heavy-taileddistributions)、自相似(Self-similarity)、短相关(Short-RangeDependence,SRD)和长相关(Long-RangeDependence,LRD)特性,传统的网络流量模型不能准确地捕获这些特征。第四章基于回归模型来估计大尺度IP流量矩阵,主要包括两方面的研究:(1)为了描述网络流量的时间相关性,将OD流建模为自回归滑动平均(AutoregressiveMovingAverage,ARMA)模型,并利用马氏距离的优点,将流量矩阵估计问题描述为马氏距离下的最优化过程,通过迭代寻优来获得流量矩阵的精确估计。(2)网络流量的自相关函数表示网络流量是非平稳的,它是一种时变非平稳流量。...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?