第3章3.1.1函数的概念备作业-上好数学课-学年高一同步备课系列人教A必修第一册

备作业3.1.1函数的概念[A级基础稳固]1.区间(-3,2]用集合可表示为()A.{-2,-1,0,1,2}B.{x|-3<x<2}C.{x|-3<x≤2}D.{x|-3≤x≤2}解析:选C由区间和集合的关系,可得区间(-3,2]可表示为{x|-3<x≤2},故选C.2.(多选)下列两个集合间的对应中,是A到B的函数的有()A.A={-1,0,1},B={-1,0,1},f:A中的数的平方B.A={0,1},B={-1,0,1},f:A中的数的开方C.A=Z,B=Q,f:A中的数的倒数D.A={1,2,3,4},B={2,4,6,8},f:A中的数的2倍解析:选ADA中,可组成函数关系;B中,对于集合A中元素1,在集合B中有两个元素与之对应,因此不是函数关系;C中,A中元素0的倒数没有意义,在集合B中没有元素与之对应,因此不是函数关系;D中,可组成函数关系.3.下列各组函数中,表示同一个函数的是()A.y=x-2和y=B.y=x-1和y=C.f(x)=(x-1)2和g(x)=(x+1)2D.f(x)=和g(x)=解析:选DA中的函数定义域不同;B中函数的对应关系不同;C中两函数的对应关系不同,故选D.4.若函数f(x)=ax2-1,a为一个正数,且f(f(-1))=-1,那么a的值是()A.1B.0C.-1D.2解析:选A∵f(x)=ax2-1,∴f(-1)=a-1,f(f(-1))=f(a-1)=a·(a-1)2-1=-1.∴a(a-1)2=0.又∵a为正数,∴a=1.5.下列函数中,值域为(0,+∞)的是()A.y=B.y=C.y=D.y=x2+1解析:选By=的值域为[0,+∞),y=的值域为(-∞,0)∪(0,+∞),y=x2+1的值域为[1,+∞).6.若[a,3a-1]为一确定区间,则a的取值范围是________.解析:由题意知3a-1>a,则a>.参考答案:7.已知函数f(x)=2x-3,x∈{x∈N|1≤x≤5},则函数f(x)的值域为________.解析:∵x=1,2,3,4,5,且f(x)=2x-3.∴f(x)的值域为{-1,1,3,5,7}.参考答案:{-1,1,3,5,7}8.设f(x)=,则f(f(x))=________.解析:f(f(x))===.参考答案:(x≠0,且x≠1)9.求函数y=的定义域,并用区间表示.解:要使函数解析式有意义,需满足:即所以-2≤x≤3且x≠.所以函数的定义域是.用区间表示为∪.10.已知f(x)=(x∈R,且x≠-1),g(x)=x2-1(x∈R).(1)求f(2),g(3)的值;(2)求f(g(3))的值及f(g(x)).解:(1)因为f(x)=,所以f(2)==-.因为g(x)=x2-1,所以g(3)=32-1=8.(2)依题意,知f(g(3))=f(8)==-,2f(g(x))===(x≠0).[B级综合运用]11.(多选)下列函数中,满足f(2x)=2f(x)的是()A.f(x)=|x|B.f(x)=x-|x|C.f(x)=x+1D.f(x)=-x解析:选ABD在A中,f(2x)=|2x|=2|x|,2f(x)=2|x|,满足f(2x)=2f(x);在B中,f(2x)=2x-|2x|=2(x-|x|)=2f(x),满足f(2x)=2f(x);在C中,f(2x)=2x+1,2f(x)=2(x+1)=2x+2,不满足f(2x)=2f(x);在D中,f(2x)=-2x=2(-x)=2f(x),满足f(2x)=2f(x).12.已知f(x)满足f(ab)=f(a)+f(b),且f(2)=p,f(3)=q.那么f(72)等于()A.p+qB.3p+2qC.2p+3qD.p3+q2解析:选B因为f(ab)=f(a)+f(b),所以f(9)=f(3)+f(3)=2q,f(8)=f(2)+f(2)+f(2)=3p,所以f(72)=f(8×9)=f(8)+f(9)=3p+2q.13.(一题两空)若函数f(x)的定义域为[-2,1],则y=f(x)+f(-x)的定义域为________;y=f(2x+1)的定义域为________.解析:由题意,得即-1≤x≤1.故y=f(x)+f(-x)的定义域为[-1,1].由-2≤2x+1≤1,得-≤x≤0,即函数y=f(2x+1)的定义域为.参考答案:[-1,1]14.试求下列函数的定义域与值域:(1)y=(x-1)2+1,x∈{-1,0,1,2,3};(2)y=(x-1)2+1;(3)y=;(4)y=x-.解:(1)函数的定义域为{-1,0,1,2,3},当x=-1时,y=[(-1)-1]2+1=5,同理可得f(0)=2,f(1)=1,f(2)=2,f(3)=5,所以函数的值域为{1,2,5}.(2)函数的定义域为R,因为(x-1)2+1≥1,所以函数的值域为{y|y≥1}.(3)函数的定义域是{x|x≠1},y==5+,所以函数的值域为{y|y≠5}.(4)要使函数式有意义,需x+1≥0,即x≥-1,故函数的定义域是{x|x≥-1}.设t=,则x=t2-1(t≥0),于是f(t)=t2-1-t=-.又t≥0,故f(t)≥-.所以函数的值域是.3知识改变命运4

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?