高中数学人教A必修四课下能力提升十八-数学备课含解析

课下能力提升(十八)[学业水平达标练]题组1向量的坐标表示1.已知=(-2,4),则下面说法正确的是()A.A点的坐标是(-2,4)B.B点的坐标是(-2,4)C.当B是原点时,A点的坐标是(-2,4)D.当A是原点时,B点的坐标是(-2,4)()A.(-2,3)B.(2,-3)C.(2,3)D.(-2,-3)3.若A(2,-1),B(4,2),C(1,5),则题组2平面向量的坐标运算4.设平面向量a=(3,5),b=(-2,1),则a-2b=()A.(6,3)B.(7,3)C.(2,1)D.(7,2)5.若向量a=(x-2,3)与向量b=(1,y+2)相等,则()A.x=1,y=3B.x=3,y=1C.x=1,y=-5D.x=5,y=-16.已知A(-3,0),B(0,2),O为坐标原点,点C在∠AOB内,|OC|=2,且∠AOC=.设(λ∈R),则λ=________.题组3向量共线的坐标表示8.已知A(2,-1),B(3,1),则与AB―→平行且方向相反的向量a是()A.(2,1)B.(-6,-3)C.(-1,2)D.(-4,-8)9.已知A(-1,4),B(x,-2),若C(3,3)在直线AB上,则x=________.11.平面内给定三个向量a=(3,2),b=(-1,2),c=(4,1),回答下列问题:(1)求3a+b-2c;(2)求满足a=mb+nc的实数m,n;(3)若(a+kc)∥(2b-a),求实数k.[能力提升综合练]1.已知A(7,1),B(1,4),直线y=ax与线段AB交于C,且,则实数a等于()A.2B.1C.D.2.设向量a=(1,-3),b=(-2,4),c=(-1,-2),若表示向量4a,4b-2c,2(a-c),d的有向线段首尾相接能构成四边形,则向量d为()A.(2,6)B.(-2,6)C.(2,-6)D.(-2,-6)3.已知向量a=(1,0),b=(0,1),c=ka+b(k∈R),d=a-b,如果c∥d,那么()A.k=1且c与d同向B.k=1且c与d反向C.k=-1且c与d同向D.k=-1且c与d反向4.已知向量a=(2,3),b=(-1,2),若ma+nb与a-2b共线,则等于()A.-B.C.-2D.26.已知P1(2,-1),P2(-1,3),P在直线P1P2上,且.则P点的坐标为________.7.已知点O(0,0),A(1,2),B(4,5),且,试问:(1)t为何值时,P在x轴上?P在y轴上?P在第二象限?(2)四边形OABP可能为平行四边形吗?若可能,求出相应的t值;若不可能,请说明理由.8.如图所示,已知△AOB中,A(0,5),O(0,0),B(4,3),AD与BC相交于点M,求点M的坐标.答案[学业水平达标练]1.解析:选D由任一向量的坐标的定义可知:当A点是原点时,B点的坐标是(-2,4).2.3.解析: A(2,-1),B(4,2),C(1,5),=(2,3)+(-6,6)=(-4,9).答案:(-4,9)4.解析:选B a=(3,5),b=(-2,1),∴a-2b=(3,5)-2(-2,1)=(3,5)-(-4,2)=(7,3).5.解析:选B由题意,知解得6.解析:过C作CE⊥x轴于点E,由∠AOC=知,|OE|=|CE|=2,所以(-2,0)=λ(-3,0),故λ=.答案:7.∴(x1+1,y1-2)=(3,6)=(1,2),(-1-x2,2-y2)=-(-3,-6)=(1,2).则有解得∴C,D的坐标分别为(0,4)和(-2,0),因此=(-2,-4).8.解析:选D=(1,2),向量(2,1)、(-6,-3)、(-1,2)与(1,2)不平行;(-4,-8)与(1,2)平行且方向相反.9.解析:=(x+1,-6),=(4,-1), ∥,∴-(x+1)+24=0,∴x=23.答案:2310.证明:设E(x1,y1),F(x2,y2),所以(x1+1,y1)=,故E;所以(x2-3,y2+1)=,故F.所以=.又因为4×-×(-1)=0,11.解:(1)3a+b-2c=3(3,2)+(-1,2)-2(4,1)=(9,6)+(-1,2)-(8,2)=(9-1-8,6+2-2)=(0,6).(2) a=mb+nc,∴(3,2)=m(-1,2)+n(4,1)=(-m+4n,2m+n).∴-m+4n=3且2m+n=2,解得m=,n=.(3) (a+kc)∥(2b-a),又a+kc=(3+4k,2+k),2b-a=(-5,2),∴2×(3+4k)-(-5)×(2+k)=0.∴k=-.[能力提升综合练]1.解析:选A设C(x0,y0),则y0=ax0,∴=,=, ,∴∴2.解析:选D 四条有向线段首尾相接构成四边形,则对应向量之和为零向量,即4a+(4b-2c)+2(a-c)+d=0,∴d=-6a-4b+4c=-6(1,-3)-4(-2,4)+4(-1,-2)=(-2,-6).3.解析:选D a=(1,0),b=(0,1),若k=1,则c=a+b=(1,1),d=a-b=(1,-1),显然c与d不平行,排除A、B.若k=-1,则c=-a+b=(-1,1),d=a-b=-(-1,1),即c∥d且c与d反向.4.解析:选A由向量a=(2,3),...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?