分子动力学与原子多体势解析

一.分子动力学简介随着纳米科技的到来,许多新的学科产生了,例如纳米电子学、纳米生物学、纳米材料学、纳米机械学等。人们的注意力逐渐从宏观物体转向小尺度及相应的器件,其中微机械系统(mieromachine)或称微型机电系统(mieroe一eetro一meeh耐ealsystem,MEMs)尤其取得了成功,并正被拓展应用于各种工业过程。由图1可知,分子动力学正是处于nm尺度下的研究方法。图1.不同模拟方法所对应的空间和时间尺度[1]开创了分子动力学(Moleeularnynamies,MD)方法,1957年Alder和Wainwright之后经过多位科学家的努力,拓展了分子动力学方法的理论、技术及应用领域,尤其是在20世纪[2]先后完成的恒温、定压分子动力学方法,标志着分子动力学方法的等年代由Andersen80科研应用进入了一个新阶段。分子动力学方法是研究纳米尺度物理现象的重要手段。随着越来越多的材料原子间作用势函数被精确描述并经过实验验证、计算机硬件水平的快速更新以及高效率新算法的提出,分子动力学模拟被广泛应用于纳米尺度力学行为和纳米材料力学性能的研究。在纳米尺度下,材料由离散的原子排列而成,由于比表面积大、表面效应明显,材料的力学性能和力学行为将与宏观材料迥异。基于连续性假设的宏观连续介质理论在研究材料的损伤演化、失效过程时,往往在时间和空间上将原子尺度的缺陷进行平均化处理,但这种处理仅适用于大量缺陷分布在材料中计算区域的情形,而对许多细微观材料和力学实验观测到的现象都无法解释,如疲劳与蠕变过程中的位错模式、塑性变形的不均匀性、脆性断裂的统计本质、尺寸效应等。因此,连续介质理论显然难以准确求解纳米尺度的力学问题。同时,如果直接从第一原理出发进行计算,除了类氢原子以外其他材料的薛定愕方程求解难度都太大,而且局域密度泛函近似理论并不是总能满足实际问题的需要。另一方面,材料本身在空[3,4],直接从头开始的量子力学计算难以很好地间、时间和能量等方面存在藕合和脱祸现象应用到几百个原子以下的计算规模中,无法达到一般纳米材料和器件的模拟要求。此外,由于实验条件控制的困难和合成、制备方式不同,各种纳米材料力学性能的有关实验结果分散性较大甚至相反,以至于目前难以通过纳米力学实验得到普遍适用的定量力学规律。鉴于理论和实验上的困难,通过分子动力学方法模拟纳米尺度的力学性能和行为来探索纳米尺度的一般规律,是进行纳米力学研究的有效方法。分子动力学最早用于热动力学和物理化学,计算不同物理系统如固体、气体、液体的整体或平均热化学性能。1957年Alder首次提出并采用分子动力学方法分析刚性球系统的固液相变问题取得成功,此后,分子动力1学开始逐渐应用于材料领域。随着上世纪80年代计算机硬件水平的提高和各种描述原子间作用的势函数的提出,分子动力学模拟日益活跃。通过分子动力学模拟不仅可以深入了解复杂的机制,发现本质上崭新的现象,而且可以定量模拟真实固体中所发生的过程,是诸如表[5-9]。在EAM面结构和扩散中的动力学和稳定性等许多结果的唯一理论逐渐成熟和[10-13][14-18]等精确测出大量常用材料的EAMAckland实验室Baskes实验室参数以后,分子、动力学方法在模拟材料的物理性能和现象方面逐渐显示出强大的计算能力和较高的精度,大量的模拟尤其是固体结构、位错运动、表面界面现象、力学性能、变形机制和流体中的电泳、电渗透流等都得到了理想的结果。只要能将基于物理的模型建立起来,通过分子动力学计算就可以揭示出物理现象的本质,逐渐被广泛应用于凝聚态物理、材料学、力学、生物学、微电子学和微纳米加工等领域。晶体是由大量的原子有序排列而成,材料的强度于原子间的相互作用,塑性于原子间的相互运动。因此,直接从原子尺度上对材料的微观力学行为进行研究显得非常有必要。分子动力学模拟技术既能得到原子的运动轨迹,还能像做实验一样观察。对于平衡系统,可以在一个分子动力学观察时间(ObservationTime)内做时间平均来计算一个物理量的统计平均值,对于一个非平衡系统过程,只要发生在一个分子动力学观察时间内(一般为1一10ps)的物理现象也可以用分子动力学计算进行直接模拟。特别是许多与原子有关的微观细...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

文秘专家
机构认证
内容提供者

1

确认删除?