基于改进小波阈值函数的语音增强算法研究

基于改进小波阈值函数的语音增强算法研究摘要:针对传统的小波阈值去噪算法中的阈值函数不足,提出一种优于非负死区阈值函数的改进的阈值函数.改进阈值函数不仅具有良好的连续性、可导性,并且克服了非负死区阈值函数没有考虑小波变换模值的衰减符合指数规律这一特点.另外在阈值的选取中,考虑了带噪语音信号的不同特性,采用谱平坦度函数修正阈值.仿真实验表明,与传统的非负死区阈值函数去噪算法相比,改进的阈值函数能更有效地消除背景噪声,在提高输出信噪比的同时,更好地保持语音质量和清晰度.关键词:语音增强;小波变换;阈值去噪:TN912.3文献标识码:A语音增强是将尽可能纯净的原始语音从带噪语音信号中提取出来.其主要目的是:消除背景噪音、改进语音质量、提高语音可懂度、使听者乐于接受并且不会感觉到疲劳.目前,在平稳的噪声环境下语音增强效果较好,但在非平稳环境下,尤其在低信噪比情况下对语音增强算法的研究仍是语音信号处理的一个重要方向\[1-3\].小波变换属于一种信号的时间尺度变换分析方法,可以同时很好地表征出信号在时域和频域的局部特性.小波变换具有多分辨率分析的特点,在信号的低频部分具有较低的时间分辨率和较高的频率分辨率,在信号的高频部分具有较低的频率分辨率和较高的时间分辨率,是一种适应于非平稳环境的信号处理方法\[4\].文献[5]首次提出了基于软硬阈值函数的小波语音增强算法,随后Breiman在Donoho的基础上提出了一种非负死区阈值函数去噪算法\[6\],其语音增强效果要优于传统的软硬阈值函数去噪算法.但通过分析可知:非负死区阈值函数并没有考虑语音信号的小波变换模值的衰减是符合指数规律的这一特点,因此其去噪效果有待进一步提高\[7\].本文对软硬阈值以及非负死区阈值函数进行分析,并在此基础上提出一种改进的阈值函数的小波语音增强算法.改进阈值函数克服了非负死区阈值函数的不足,仿真实验表明,改进阈值函数去噪效果要明显优于非负死区阈值函数,在抑制噪声的同时很好地保持了语音的可懂度.1小波去噪原理信号在某点处出现间断或者其某阶导数不连续的性质称为信号的奇异性,通常采用信号的Lipschitz指数来表征信号的奇异性.文献[8]建立了信号的Lipschitz指数与小波系数的局部模极大值之间的关系.对信号f(t)来说,假设存在正数T使得不等式(1)成立:|f(t0+τ)-fn(t0+τ)|≤T|τ|δ,n则称δ为信号f(t)在t0处的Lipschitz指数.其中n为正整数,fn(t)为信号f(t0)的n次多项式,τ为一个充分小的量.设信号f(t)的小波变换系数的模为|Wf(a,b)|.假设存在正数b0∈(b0-τ,b0+τ)使得|Wf(a,b)|≤|Wf(a,b0)|成立.则称b0为f(t)的小波变换的局部极大值点,|Wf(a,b0)|为小波变换的模极大值.在尺度a=2j时,f(t)的Lipschitz指数δ与其小波模极大值W2jf(2j,b0)满足下式:log2|W2jf(2j,b0)|≤log2A+δj.(2)其中A是与基小波相关的常量.由式(2)可得,当f(t)的Lipschitz指数δ>0时,则信号f(t)的模极大值W2jf(2j,b0)将会随着分解尺度j的增大而增加;反之,当f(t)的Lipschitz指数δ<0时,信号f(t)的模极大值W2jf(2j,b0)将会随着分解尺度j的增大而减少.由以上信号的分析特性可知,纯净语音信号的Lipschitz指数δ>0,其极大值是随分解尺度j的增大而增加;而噪声信号的Lipschitz指数δ<0,其极大值是随分解尺度j的增大而减少.根据语音信号和噪声信号所具有的这个特性,可以在运用小波系数进行处理时,在不同的分解尺度上设置一个合适的门限阈值,将小于该阈值的极大模值点认为是噪声的小波变换引起的,因而将其置零.大于该阈值的极大模值点则认为是信号小波变换引起的予以保留.然后再通过小波逆变换重构信号,达到增强去噪的目的.2小波阈值去噪算法由小波变换的线性特性可知,带噪语音信号的小波变换系数等于噪声信号的小波变换系数和纯净语音信号的小波变换系数之和.按照这一性质,利用小波变换进行阈值去噪的基本思路是:首先选择合适的基小波函数和分解层数对带噪语音信号进行多尺度小波分解;然后分别对各尺度的高频小波系数采用合适的门限阈值及阈值函数进行处理:最大限度去除...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

文秘专家
机构认证
内容提供者

1

确认删除?