离散数学试题(A卷及答案)一、证明题(10分)1)(P∧(Q∧R))∨(Q∧R)∨(P∧R)R证明:左端(P∧Q∧R)∨((Q∨P)∧R)((P∧Q)∧R))∨((Q∨P)∧R)((P∨Q)∧R)∨((Q∨P)∧R)((P∨Q)∨(Q∨P))∧R((P∨Q)∨(P∨Q))∧RT∧R(置换)R2)x(A(x)B(x))xA(x)xB(x)证明:x(A(x)B(x))x(A(x)∨B(x))xA(x)∨xB(x)xA(x)∨xB(x)xA(x)xB(x)二、求命题公式(P∨(Q∧R))(P∧Q∧R)的主析取范式和主合取范式(10分)证明:(P∨(Q∧R))(P∧Q∧R)(P∨(Q∧R))∨(P∧Q∧R))(P∧(Q∨R))∨(P∧Q∧R)(P∧Q)∨(P∧R))∨(P∧Q∧R)(P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R))∨(P∧Q∧R))∨(P∧Q∧R)m0∨m1∨m2∨m7M3∨M4∨M5∨M6三、推理证明题(10分)1)C∨D,(C∨D)E,E(A∧B),(A∧B)(R∨S)R∨S证明:(1)(C∨D)E(2)E(A∧B)(3)(C∨D)(A∧B)(4)(A∧B)(R∨S)(5)(C∨D)(R∨S)(6)C∨D(7)R∨S2)x(P(x)Q(y)∧R(x)),xP(x)Q(y)∧x(P(x)∧R(x))证明(1)xP(x)(2)P(a)(3)x(P(x)Q(y)∧R(x))(4)P(a)Q(y)∧R(a)(5)Q(y)∧R(a)(6)Q(y)(7)R(a)(8)P(a)(9)P(a)∧R(a)(10)x(P(x)∧R(x))(11)Q(y)∧x(P(x)∧R(x))五、已知A、B、C是三个集合,证明A-(B∪C)=(A-B)∩(A-C)(15分)证明 xA-(B∪C)xA∧x(B∪C)xA∧(xB∧xC)(xA∧xB)∧(xA∧xC)x(A-B)∧x(A-C)x(A-B)∩(A-C)∴A-(B∪C)=(A-B)∩(A-C)六、已知R、S是N上的关系,其定义如下:R={<x,y>|x,yN∧y=x2},S={<x,y>|x,yN∧y=x+1}。求R-1、R*S、S*R、R{1,2}、S[{1,2}](10分)解:R-1={<y,x>|x,yN∧y=x2},R*S={<x,y>|x,yN∧y=x2+1},S*R={<x,y>|x,yN∧y=(x+1)2},七、若f:A→B和g:B→C是双射,则(gf)-1=f-1g-1(10分)。证明:因为f、g是双射,所以gf:A→C是双射,所以gf有逆函数(gf)-1:C→A。同理可推f-1g-1:C→A是双射。因为<x,y>∈f-1g-1存在z(<x,z>∈g-1<z,y>∈f-1)存在z(<y,z>∈f<z,x>∈g)<y,x>∈gf<x,y>∈(gf)-1,所以(gf)-1=f-1g-1。R{1,2}={<1,1>,<2,4>},S[{1,2}]={1,4}。离散数学试题(B卷及答案)一、证明题(10分)1)((P∨Q)∧(P∧(Q∨R)))∨(P∧Q)∨(P∧R)T证明左端((P∨Q)∧(P∨(Q∧R)))∨((P∨Q)∧(P∨R))(摩根律)((P∨Q)∧(P∨Q)∧(P∨R))∨((P∨Q)∧(P∨R))(分配律)((P∨Q)∧(P∨R))∨((P∨Q)∧(P∨R))(等幂律)T(代入)2)x(P(x)Q(x))∧xP(x)x(P(x)∧Q(x))证明x(P(x)Q(x))∧xP(x)x((P(x)Q(x)∧P(x))x((P(x)∨Q(x)∧P(x))x(P(x)∧Q(x))xP(x)∧xQ(x)x(P(x)∧Q(x))二、求命题公式(PQ)(P∨Q)的主析取范式和主合取范式(10分)解:(PQ)(P∨Q)(PQ)∨(P∨Q)(P∨Q)∨(P∨Q)(P∧Q)∨(P∨Q)(P∨P∨Q)∧(Q∨P∨Q)(P∨Q)M1m0∨m2∨m3三、推理证明题(10分)1)(P(QS))∧(R∨P)∧QRS证明:(1)R附加前提(2)R∨PP(3)PT(1)(2),I(4)P(QS)P(5)QST(3)(4),I(6)QP(7)ST(5)(6),I(8)RSCP2)x(P(x)∨Q(x)),xP(x)xQ(x)证明:(1)xP(x)P(2)P(c)T(1),US(3)x(P(x)∨Q(x))P(4)P(c)∨Q(c)T(3),US(5)Q(c)T(2)(4),I(6)xQ(x)T(5),EG五、已知A、B、C是三个集合,证明A∩(B∪C)=(A∩B)∪(A∩C)(10分)证明: xA∩(B∪C)xA∧x(B∪C)xA∧(xB∨xC)(xA∧xB)∨(xA∧xC)x(A∩B)∨xA∩Cx(A∩B)∪(A∩C)∴A∩(B∪C)=(A∩B)∪(A∩C)六、={A1,A2,…,An}是集合A的一个划分,定义R={<a,b>|a、b∈Ai,I=1,2,…,n},则R是A上的等价关系(15分)。证明:a∈A必有i使得a∈Ai,由定义知aRa,故R自反。a,b∈A,若aRb,则a,b∈Ai,即b,a∈Ai,所以bRa,故R对称。a,b,c∈A,若aRb且bRc,则a,b∈Ai及b,c∈Aj。因为i≠j时Ai∩Aj=,故i=j,即a,b,c∈Ai,所以aRc,故R传递。总...