高中数学浙江专版选修2-3学案:第一章1.21.2.2第一课时组合与组合数公式Word版含解析

1.2.2组合第一课时组合与组合数公式预习课本P21~24,思考并完成以下问题1.组合的概念是什么?2.什么是组合数?组合数公式是怎样的?3.组合数有怎样的性质?1.组合的概念从n个不同的元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.2.组合数的概念、公式、性质组合数定义从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数表示法C组合数公式乘积式C==阶乘式C=性质C=C_,C=C+C_备注①n,m∈N*且m≤n,②规定:C=1[点睛]排列与组合的联系与区别联系:二者都是从n个不同的元素中取m(n≥m)个元素.区别:排列与元素的顺序有关,组合与元素的顺序无关,只有元素相同且顺序也相同的两个排列才是相同的排列.只要两个组合的元素相同,不论元素的顺序如何,都是相同的组合.1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)从a,b,c三个不同的元素中任取两个元素的一个组合是C.()(2)从1,3,5,7中任取两个数相乘可得C个积.()(3)1,2,3与3,2,1是同一个组合.()(4)C=5×4×3=60.()答案:(1)×(2)√(3)√(4)×2.C=10,则n的值为()A.10B.5C.3D.4答案:B3.从9名学生中选出3名参加“希望英语”口语比赛,不同选法有()A.504种B.729种C.84种D.27种答案:C4.计算C+C+C=________.答案:120组合的概念[典例]判断下列问题是组合问题还是排列问题:(1)设集合A={a,b,c,d,e},则集合A的子集中含有3个元素的有多少个?(2)某铁路线上有5个车站,则这条线上共需准备多少种车票?多少种票价?(3)3人去干5种不同的工作,每人干一种,有多少种分工方法?(4)把3本相同的书分给5个学生,每人最多得1本,有几种分配方法?[解](1)因为本问题与元素顺序无关,故是组合问题.(2)因为甲站到乙站,与乙站到甲站车票是不同的,故是排列问题,但票价与顺序无关,甲站到乙站,与乙站到甲站是同一种票价,故是组合问题.(3)因为分工方法是从5种不同的工作中取出3种,按一定次序分给3个人去干,故是排列问题.(4)因为3本书是相同的,无论把3本书分给哪三人,都不需考虑他们的顺序,故是组合问题.区分排列与组合的方法区分排列与组合的办法是首先弄清楚事件是什么,区分的标志是有无顺序,而区分有无顺序的方法是:把问题的一个选择结果写出来,然后交换这个结果中任意两个元素的位置,看是否会产生新的变化,若有新变化,即说明有顺序,是排列问题;若无新变化,即说明无顺序,是组合问题.[活学活用]判断下列问题是组合问题还是排列问题:(1)把5本不同的书分给5个学生,每人一本;(2)从7本不同的书中取出5本给某个同学;(3)10个人相互写一封信,共写了几封信;(4)10个人互相通一次电话,共通了几次电话.解:(1)由于书不同,每人每次拿到的也不同,有顺序之分,故它是排列问题.(2)从7本不同的书中,取出5本给某个同学,在每种取法中取出的5本并不考虑书的顺序,故它是组合问题.(3)因为两人互写一封信与写信人与收信人的顺序有关,故它是排列问题.(4)因为互通电话一次没有顺序之分,故它是组合问题.有关组合数的计算与证明[典例](1)计算C-C·A;(2)证明:mC=nC.[解](1)原式=C-A=-7×6×5=210-210=0.(2)证明:mC=m·==n·=nC.关于组合数公式的选取技巧(1)涉及具体数字的可以直接用C=·==C进行计算.(2)涉及字母的可以用阶乘式C=计算.(3)计算时应注意利用组合数的性质C=C简化运算.[活学活用]1.计算:C+C的值.解: ∴9.5≤n≤10.5. n∈N*,∴n=10.∴C+C=C+C=C+C=+31=466.2.求使3C=5A成立的x值.解:根据排列数和组合数公式,原方程可化为3·=5·,即=,即为(x-3)(x-6)=40.∴x2-9x-22=0,解得x=11或x=-2.经检验知x=11时原式成立.3.证明下列各等式.(1)C=C;(2)C+C+C…+C=C.解:(1)右边=·=·==C=左边,∴原式成立.(2)左边=(C+C)+C+C+…+C=(C+C)+C+…+C=(C+C)+…+C=(C3n+4+C)+…+C=…=C+C=C=右边,∴原式成立.简单的组合问题[典例]在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人去参加市级...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

文秘专家
机构认证
内容提供者

1

确认删除?