浅谈微分方程的起源与发展史

浅谈微分方程的起源与发展史摘要:微分方程起源于17世纪,简单的微分方程分别是牛顿、莱布尼茨和伯努利从几何和力学问题上解决的问题。这些早期发现开始于1690年,这逐渐导致一些特殊的微分方程的“特殊技能”的发展。虽然这些特殊的技术只适用于相对较少的情况下,但是他们可以解决许多微分方程在力学和几何中的问题,所以,他们的研究具有非常重要的现实意义。这些特殊的方法和问题,将有助于我们解决很多问题。引言:很多的科学问题是需要人们根据事物的变化率来确定事物的特征。比如,我们可以试着用已知的速度或加速度来计算粒子的位置,又比如,一些放射性物质可能是已知的衰变率,这就要求我们在一个给定的时间内确定材料的总量。通过这些例子,我们可以发现,如果知道自变量、未知函数以及函数的导数(或者微分)组成的关系式,得到的就是微分方程。最后再通过微分方程求出未知函数。关键字:微分方程起源发展史一、微分方程的思想萌芽微分方程就是联系着自变量,未知函数以及其导数的关系式。微分方程理论的发展是跟随着微积分理论的建立发展起来的,一般地,客观世界的时间要服从一定的客观规律,这种连接,用数学语言表达,即是抽象为微分方程,一旦获得或研究的解决方案是明确的空气动力学行为,变量之间的规律是一目了然的。例如在物体运动中,唯一的计算就与瞬间速度之间有着紧密的联系,其结果往往形成一个微分方程,一旦求出解或研究清楚气动力学行为,就明确的掌握了物体的运动规律。1.1微分方程的起源:微分方程起源于17世纪,简单的微分方程分别是牛顿、莱布尼茨和伯努利从几何和力学问题上解决的问题。这些早期发现开始于1690年,这逐渐导致一些特殊的微分方程的“特殊技能”的发展。1.2微分方程在实际问题中的应用:运用微分方程理论解决一些实际问题,即根据生物学,物理学,化学,几何学等学科的实际问题及相关知识建立微分方程,讨论该方程解的性质,并由所得的解或解的性质反过来解释该实际过程。物质运动和它的变化规律在数学上是用函数关系描述的,但是在实际问题中往往不能直接写出反映运动规律的函数,却比较容易建立这些变量与他们的导数之间的关系式,即微分方程。只有一个自变量的微分方程称为常微分方程,简称微分方程。例1传染病模型传染病(瘟疫)经常在全世界各地流行,假设传染病传播期间其他地区的总人数不变,为常数,最开始的染病人数为,在时的健康人数为,染病人数为。因为总人数为常数所以可得到式子①假设单位时间内一个病人能传染的人数与当时的健康人数成正比,且比例常数为,称为传染系数,于是即可得到式子②由①和②可得③这个模型就是SI模型,即易感染者模型和已感染者模型。对于无免疫的传染性疾病如痢疾、伤风等等,病人在治愈以后还会有再次被感染的危险。所以我们可以假设单位时间内的治愈率为,那么方程②就应该修改为④由①和④可得,⑤这个模型称为SIS模型,就是这个传染病的平均传染期,为整个传染期内每个病人有下接触的平均人数(平均接触数)。对于很强免疫性的传染性疾病例如天花、流感等等,病人治愈以后不会有再被传染的机会。我们就可以假设在时刻的治愈后的免疫人数为,称为移出者,且治愈率为常数,所以可得⑥⑦⑧根据⑥、⑦和⑧可得⑨这个模型称为SIR模型,综上所述三个类型的传染病模型③、⑤和⑨均为微分方程微分方程就是根据此种生物类型的实际问题和其他的物理、几何、化学等的实际问题所受到的启发。二、微分方程的推导1.1术语和记号当我们用微分方程处理问题时,习惯性地用替代,用替代,更高阶的导数可以记为、①等。当然其他字母,如,,等等都可以用来代替.微分方程的阶,意思是出现在其中的导数的最高阶数。例如,是一阶,微分方程就是一个二阶方程。1.2微分方程的推导三、微分方程有哪些类型微分方程的类型:①常微分方程(自变量的个数1个);②偏微分方程(自变量的个数2或2个以上)1.1常微分方程(自变量的个数只有1个):上述两个常微分方程(自变量:未知函数:)常微分方程的发展阶段:①发展初期就是对具体的常微分方程希望能用初等函数或超越函数表示其解,属于“求通解”时代。莱布尼茨(Leibni...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

确认删除?